The classical result on singularities for the 3D Navier-Stokes equations says that the 1-dimensional Hausdorff measure of the set of singular points is zero. For a stochastic version of the equation, new results are proved. For statistically stationary solutions, at any given time t, with probability one the set of singular points is empty. The same result is true for a.e. initial condition with respect to a measure related to the stationary solution, and if the noise is sufficiently non degenerate the support of such measure is the full energy space.
A model of vortex filaments based on stochastic processes is presented. In contrast to previous models based on semimartingales, here processes with fractal properties between $1/2$ and $1$ are used, which include fractional Brownian motion and similar non-Gaussian examples. Stochastic integration for these processes is employed to give a meaning to the kinetic energy.