Due to globalization and relaxed market regulation, we have assisted to an increasing of extremal dependence in international markets. As a consequence, several measures of tail dependence have been stated in literature in recent years, based on multivariate extreme-value theory. In this paper we present a tail dependence function and an extremal coefficient of dependence between two random vectors that extend existing ones. We shall see that in weakening the usual required dependence allows to assess the amount of dependence in d-variate random vectors based on bidimensional techniques. Simple estimators will be stated and can be applied to the well-known \emph{stable tail dependence function}. Asymptotic normality and strong consistency will be derived too. An application to financial markets will be presented at the end.
In what concerns extreme values modeling, heavy tailed autoregressive processes defined with the minimum or maximum operator have proved to be good alternatives to classical linear ARMA with heavy tailed marginals (Davis and Resnick [8], Ferreira and Canto e Castro [13]). In this paper we present a complete characterization of the tail behavior of the autoregressive Pareto process known as Yeh-Arnold-Robertson Pareto(III) (Yeh et al. [32]). We shall see that it is quite similar to the first order max-autoregressive ARMAX, but has a more robust parameter estimation procedure, being therefore more attractive for modeling purposes. Consistency and asymptotic normality of the presented estimators will also be stated.