Phylogenetic relationships of 27 species within the genus Ochotona were reconstructed through mitochondrial cytochrome b gene. Maximum parsimony, neighbor-joining and maximum likelihood analysis strongly indicated five major species groups: the northern group, the surrounding Qinghai-Tibet Plateau group, the Qinghai-Tibet Plateau group, the Huanghe group, and the Central Asia group. The northern group is composed of O. alpina, O. hyperborea, O. pallasi, O. princeps, and . The surrounding Qinghai-Tibet Plateau group includes O. macrotis, O. roylei, O. ladacensis, O. rutila, O. erythrotis, O. gloveri, O. brookei, O. muliensis, O. iliensis, O. himalayana, O. koslowi, O. forresti, and O. rufescens. The Qinghai-Tibet Plateau group contains O. curzoniae, O. thibetana, O. cansus, O. annectens, O. nubrica, O. daurica, and O. thomasi. The Huanghe group and the Central Asia group comprise only one species, O. huangensis and O. pusilla, respectively. Our data did not support the previous subgeneric classification. The phylogenetic trees suggested that divergences of the five groups occurred in the Early Pleistocene (about 2.8 Myr ago), and that the differentiation of the surrounding Qinghai-Tibet Plateau group, the Qinghai-Tibet Plateau group, and the Huanghe group was closely related to the uplifting of the Qinghai-Tibet Plateau and the radiation prompted by environmental changes could play a major role in these groups. Due to the relatively stable environments, however, differentiations were not so strong within the northern group and the Central Asia group, which had never invaded the Qinghai-Tibet Plateau.
There are five species of musk deer of the genus Moschus, in China, occurring in about 17 provinces. We estimate the total numbers in China to be between 220,000 and 320,000. In some areas the populations are in decline, and some are close to extinction due to over-hunting and habitat loss or degradation, the former being the primary threat to musk deer populations. To conserve musk deer, in situ protection should be improved, and the present unsustainable forest exploitation in the range areas should be halted. Poaching of musk deer, and smuggling of musk deer products, should be prevented. Domestic use of musk should be restricted. In some areas where musk deer have become extinct or are critically endangered, ex situ protection should be introduced. Musk deer farming should be revised and developed according to biological requirements.
Between 1997 and 2001, the birth dates of free living and captive Alpine musk deer were examined to determine fawning patterns, and discuss potential influencing factors. In the wild, parturition shows strong seasonality, and occurred in three months from May to July, most of the births (75%) occurring within a 27 day period. Environmental seasonality, including the climate and forage availability, plays the major role in determining the timing of births in wild musk deer. Similarly, fawning in captivity shows constancy between years and seasonality, although with later initiation and a longer season than in the wild, influenced by an environmental seasonality of relatively lower intensity. More detailed differences in fawning patterns were observed in different rows of enclosures, resulting from differences in human care, and intensified by the social interaction among individuals within a row of enclosures. Although the fawning pattern is not strongly related to age of the captives, an individual’s reproductive history seemed to influence fawning timing and synchrony, and the birth date is not strongly related to the survival of the newborn.