To determine the photosynthetic characteristics of C3 plants and their sensitivity to CO2 at different altitudes on the Tibetan Plateau, hulless barley (Hordeum vulgare L. ssp. vulgare) was grown at altitudes of 4,333 m and 3,688 m. Using gas-exchange measurements, photosynthetic parameters were simulated, including the maximum net photosynthesis (Pmax) and the apparent quantum efficiency (α). Plants growing at higher altitude had higher net photosynthetic rates (PN), photosynthesis parameters (Pmax and α) and sensitivities to CO2 enhancement than plants growing at lower altitude on the Tibetan Plateau. The enhancements of PN, Pmax, and α for plants growing at higher altitude, corresponding with 10 μmol(CO2) mol-1 increments, were approximately 0.20∼0.45%, 0.05∼0.20% and 0.12∼0.36% greater, respectively, than for plants growing at lower altitude, respectively, where CO2 levels rose from 10 to 170 μmol(CO2) mol-1. Therefore, on the Tibetan Plateau, the changes in the photosynthetic capacities and the photosynthetic sensitivities to CO2 observed in the C3 plants grown above 3,688 m are likely to increase with altitude despite the decreasing CO2 partial pressure. and Y. Z. Fan ... [et al.].
The aim of our study was to investigate the underlying molecular mechanisms of exogenously supplied trehalose affecting wheat photosynthesis under heat stress. The amount of ATP synthase (ATPase), oxygen-evolving enhancer protein (OEE), PsbP, Rubisco, chloroplast fructose-bisphosphate aldolase (FBPA), and ferredoxin-NADP(H) oxidoreductase (FNR) were downregulated, while PSI reaction center subunits were upregulated under heat stress. However, in the trehalose-pretreated groups, the amount of FNR, cytochrome b6f complex, PSI reaction center subunits, ATPase, FBPA, and Rubisco were upregulated under normal growth conditions and heat stress. Besides, during the recovery period, the upregulation in CAB, PsbP, OEE2, and ATPase suggested that trehalose pretreatment might help to the recovery of PSII and PSI. These results indicate that trehalose pretreatment effectively regulates the levels of the photosynthesis-related proteins and relieves the damage of heat stress to wheat chloroplast., Y. Luo, H. Y. Liu, Y. Z. Fan, W. Wang, Y. Y. Zhao., and Obsahuje bibliografii