Maghemite (γ-Fe2O3) nanoparticles, 12 nm in size, were prepared by co-precipitation of Fe(II) and Fe(III) chlorides with ammonium hydroxide and oxidation with hydrogen peroxide. To achieve stability and biocompatibility, obtained particles were coated with silica, to which glucose and ascorbic acid were bound by different mechanisms. The composite particles were thoroughly characterized by transmission electron microscopy, dynamic light scattering, elemental analysis, and FT-Raman and fluorescence spectroscopy to determine composition, morphology, size and its distribution, ζ-potential, and scavenging of peroxyl and hydroxyl radicals. As the particles showed promising antioxidative properties, they may have a possible application as a stable magnetically controlled scavenger of reactive oxygen species., M. Moskvin, D. Horák., and Obsahuje bibliografii
Monodisperse macroporous poly(glycidyl methacrylate) (PGMA) microspheres were used as a template for preparing porous silica particles. The starting polymer microspheres that were 9.3 μm in size were synthesized by multistep swelling polymerization using a modified Ugelstad technique. Subsequently, silica (SiO2) was deposited on the surface and inside the PGMA microspheres to produce poly(glycidyl methacrylate)-silica hybrid particles (PGMA-SiO2). Upon calcination of the PGMA-SiO2 microspheres, porous silica particles were formed. The morphology, particle size, polydispersity and inner structure of the silica microspheres were investigated by scanning and transmission electron microscopy. Thermogravimetric analysis and dynamic adsorption of nitrogen determined the amount of silica formed and its specific surface area. Compared with the starting PGMA microspheres, the size of the porous silica particles decreased by up to 30%. These porous silica microspheres are promising for chromotography and biomedical applications., S. Grama, D. Horák., and Obsahuje bibliografii