In this paper, we study decentralized H∞ feedback control systems with quantized signals in local input-output (control) channels. We first assume that a decentralized output feedback controller has been designed for a multi-channel continuous-time system so that the closed-loop system is Hurwitz stable and a desired H∞ disturbance attenuation level is achieved. However, since the local measurement outputs are quantized by a general quantizer before they are passed to the controller, the system's performance is not guaranteed. For this reason, we propose a local-output-dependent strategy for updating the quantizers' parameters, so that the closed-loop system is asymptotically stable and achieves the same H∞ disturbance attenuation level. We also extend the discussion and the result to the case of multi-channel discrete-time H∞ feedback control systems.
This paper considers a robust decentralized H2 control problem for multi-channel descriptor systems. The uncertainties are assumed to be time-invariant, norm-bounded, and exist in both the system and control input matrices. Our interest is focused on dynamic output feedback. A necessary and sufficient condition for an uncertain multi-channel descriptor system to be robustly stabilizable with a specified H2 norm is derived in terms of a strict nonlinear matrix inequality (NMI), that is, an NMI with no equality constraint. A two-stage homotopy method is proposed to solve the NMI iteratively. First, a decentralized controller for the nominal descriptor system is computed by imposing block-diagonal constraints on the coefficient matrices of the controller gradually. Then, the decentralized controller is modified, again gradually, to cope with the uncertainties. On each stage, groups of variables are fixed alternately at the iterations to reduce the NMI to linear matrix inequalities (LMIs). An example is given to show the efficiency of this method.