This work concerns controlled Markov chains with finite state space and compact action sets. The decision maker is risk-averse with constant risk-sensitivity, and the performance of a control policy is measured by the long-run average cost criterion. Under standard continuity-compactness conditions, it is shown that the (possibly non-constant) optimal value function is characterized by a system of optimality equations which allows to obtain an optimal stationary policy. Also, it is shown that the optimal superior and inferior limit average cost functions coincide.
This work is concerned with discrete-time zero-sum games with Markov transitions on a denumerable space. At each decision time player II can stop the system paying a terminal reward to player I, or can let the system to continue its evolution. If the system is not halted, player I selects an action which affects the transitions and receives a running reward from player II. Assuming the existence of an absorbing state which is accessible from any other state, the performance of a pair of decision strategies is measured by the total expected reward criterion. In this context it is shown that the value function of the game is characterized by an equilibrium equation, and the existence of a Nash equilibrium is established.
This work concerns a class of discrete-time, zero-sum games with two players and Markov transitions on a denumerable space. At each decision time player II can stop the system paying a terminal reward to player I and, if the system is no halted, player I selects an action to drive the system and receives a running reward from player II. Measuring the performance of a pair of decision strategies by the total expected discounted reward, under standard continuity-compactness conditions it is shown that this stopping game has a value function which is characterized by an equilibrium equation, and such a result is used to establish the existence of a Nash equilibrium. Also, the method of successive approximations is used to construct approximate Nash equilibria for the game.
This work is concerned with discrete-time Markov stopping games with two players. At each decision time player II can stop the game paying a terminal reward to player I, or can let the system to continue its evolution. In this latter case player I applies an action affecting the transitions and entitling him to receive a running reward from player II. It is supposed that player I has a no-null and constant risk-sensitivity coefficient, and that player II tries to minimize the utility of player I. The performance of a pair of decision strategies is measured by the risk-sensitive (expected) total reward of player I and, besides mild continuity-compactness conditions, the main structural assumption on the model is the existence of an absorbing state which is accessible from any starting point. In this context, it is shown that the value function of the game is characterized by an equilibrium equation, and the existence of a Nash equilibrium is established.
This work concerns a discrete-time Markov chain with time-invariant transition mechanism and denumerable state space, which is endowed with a nonnegative cost function with finite support. The performance of the chain is measured by the (long-run) risk-sensitive average cost and, assuming that the state space is communicating, the existence of a solution to the risk-sensitive Poisson equation is established, a result that holds even for transient chains. Also, a sufficient criterion ensuring that the functional part of a solution is uniquely determined up to an additive constant is provided, and an example is given to show that the uniqueness result may fail when that criterion is not satisfied.