Fully exposed, senescing leaves of Cornus sanguinea and Parthenocissus quinquefolia display during autumn considerable variation in both anthocyanin and chlorophyll (Chl) concentrations. They were used in this study to test the hypothesis that anthocyanins may have a photoprotective function against photosystem II (PSII) photoinhibitory damage. The hypothesis could not be confirmed with field sampled leaves since maximum photochemical efficiency (Fv/Fm) of PSII was negatively correlated to anthocyanin concentration and the possible effects of anthocyanins were also confounded by a decrease in Fv/Fm with Chl loss. However, after short-term laboratory photoinhibitory trials, the percent decrease of Fv/Fm was independent of Chl concentration. In this case, a slight alleviation of PSII damage with increasing anthocyanins was observed in P. quinquefolia, while a similar trend in C. sanguinea was not statistically significant. It is inferred that the assumed photoprotection, if addressed to PSII, may be of limited advantage and only under adverse environmental conditions. and Y. Manetas, C. Buschmann.
The thermal photoacoustic signal (279 Hz) and the chlorophyll (Chl) fluorescence of radish cotyledons (Raphanus sativus L.) were measured simultaneously. The signals were recorded during a photosynthetic induction with actinic radiation of different quantum fluence rates [20, 200, and 1200 µmol(PAR-quantum) m-2 s-1]. The rise of these signals upon irradiation saturating photosynthesis was followed in the steady state of the induction and during the subsequent dark-recovery (i.e., in dark periods of 1, 5, 15, and 45 min after the induction). From these values various parameters (e.g., quantum yield, photochemical loss, different types of quenching coefficients) were calculated. The results show that heat dissipation detected by photoacoustic measurements is neither low, constant, nor always parallel to Chl fluorescence. Therefore, the thermal signal should always be measured in order to fully understand the way leaves convert energy taken up by PAR absorption. This helps in the interpretation of photosynthesis under different natural and anthropogenic conditions (stress and damage effects).