The involvement of rapheal and medial parts of the medullary reticular formation in both generation of airway reflexes and changes in breathing were studied in 18 chloralose or pentobarbitone anaesthetized, non-paralyzed cats. Chemical lesions to the medullary midline region (0—4 mm rostral to the obex) produced by localized injections of the neurotoxin kainic acid regularly abolished the cough reflexes evoked from the tracheobronchial and laryngopharyngeal regions and in most cases also the expiration reflex induced from the glottal area. The aspiration reflex elicited from the nasopharynx was spared, but was less intense. However, the signs of cough and expiration reflexes were preserved in the neurogram of the recurrent laryngeal nerve. The experiments have shown the importance of raphe nuclei and other medullary midline structures for the occurrence of cough and expiration reflexes. One possible explanation for the elimination of these expulsive processes is the removal of an important source of facilitatory input to the spinal respiratory motoneurons or to the brainstem circuitries that mediate cough and expiration reflexes . The role of the medullary midline in modulation of eupnoeic breathing and blood pressure is also discussed.
We have tested the hypothesis that neurons of both the ventral reticular nucleus and the adjacent parts of the lateral tegmental field (LTF) may be important for the production of motor programs associated with cough, expiration and aspiration reflexes. Our studies were conducted on non-decerebrate, spontaneously breathing cats under pentobarbitone anesthesia. Dysfunction of the medullary LTF region above the obex, produced by uni- or bilateral injections of kainic acid (a neurotoxin), regularly abolished the cough reflex evoked by mechanical stimulation of both the tracheobronchial and laryngeal regions and in most cases also the expiration reflex induced from the glottal area. However, some electrical activity still occurred in the neurogram of the recurrent laryngeal nerve during probing the laryngeal and glottal regions. Interestingly, the aspiration reflex elicited from the nasopharynx regularly persisted, although with lower intensity after the LTF lesion. Nevertheless, successive midcollicular decerebration performed in four cats also abolished the aspiration reflex. These experiments demonstrate the importance of medullary LTF neurons for the normal occurrence of cough and expiration reflexes. One possible explanation for the elimination of these expulsive processes is that the blockade of the LTF neurons may remove an important source of a facilitatory input to the brainstem circuitries that mediate cough and expiration reflexes. In addition, the potential importance of the mesencephalic reticular formation for the occurrence of the aspiration reflex and the role of the LTF in modulating both the eupnoeic breathing and the blood pressure are also discussed., J. Jakuš, A. Stránsky, I. Poliaček, H. Baráni, Ľ. Bošeľová., and Obsahuje bibliografii