Horse chestnut leaf miner (Cameraria ohridella) has achieved ecological success by colonizing the entire European range of its primary host, horse chestnut (Aesculus hippocastanum). This insect has attracted the attention of scientists, but its ecology is poorly understood. Here, we investigated the effects of varying degrees of light availability on the leaf morphology of horse chestnut saplings and the performance of C. ohridella. A pot experiment under greenhouse conditions was performed in which the photosynthetic photon flux density (PPFD) was reduced from full light by 50% (high light - HL) or 80% (low light - LL). Insect performance parameters were quantified (i.e., pupal mass, efficiency of conversion of utilised leaf tissue (ECU) and potential fecundity). Compared with HL leaflets those from LL were characterised by higher contents of nitrogen and water but lower total phenolics. The oxidative capacity of phenolics (at pH ≈ 10, common in the lepidopteran gut) was low and did not differ in the two treatments. Compared with those collected from HL leaves, the mines of those collected from leaves of plants grown under LL conditions were larger in area but the leaf mass utilized by larvae was similar. Pupae were heavier in LL than in HL conditions, and ECU was higher in LL. The potential fecundity of females was not sensitive for experimental treatment. We conclude that (1) reduced light had a strong beneficial effect on the performance of C. ohridella and (2) phenolics in A. hippocastanum leaf tissues are a poor defence against this herbivore.