Athymic nude mice, a murine strain bearing spontaneous deletion in the Foxn1 gene that causes deteriorated or absent thymus (which results in inhibited immune system with reduction of number of T cells), represent a widely used model in cancer research having long lasting history as a tool for preclinical testing of drugs. The review describes three models of athymic mice that utilize cancer cell lines to induce tumors. In addition, various methods that can be applied in order to evaluate activity of anticancer agents in these models are shown and discussed. Although each model has certain disadvantages, they are still considered as inevitable instruments in many fields of cancer
research, particularly in finding new drugs that would more effectively combat the cancer disease or enhance the use of current chemotherapy. Finally, the review summarizes strengths and weaknesses as well as future perspectives of the athymic nude mice model in cancer research.
Tyrosine kinases inhibitors (TKi) represent a relatively novel class of anticancer drugs that target cellular pathways overexpressed in certain types of malignancies, such as chronic myeloid leukaemia (CML). Nilotinib, ponatinib and imatinib exhibit cardiotoxic and vascular effects. In this study, we focused on possible cardiotoxicity of nilotinib using H9
c2 cells as a suitable cell model. We studied role of endoplasmic reticulum (ER) stress and apoptosis in nilotinib toxicity using a complex approach.
Nilotinib impaired mitochondrial function and induced formation of ROS under clinically relevant concentrations. In addition, ability of nilotinib to induce ER stress has been shown. These events result in apoptotic cell death. All these mechanisms contribute to cytotoxic effect of the drug. In addition, involvement of ER stress in nilotinib toxicity may be important in co -treatment with pharmaceuticals affecting ER and ER stress, e.g. beta-blockers or sartans, and should be further investigated.