The present study was performed to evaluate the role of an interaction between the endothelin (ET) and the renin-angiotensin systems (RAS) in the development and maintenance of hypertension and in hypertension-associated end-organ damage in heterozygous male and female transgenic rats harboring the mouse Ren-2 renin gene (TGR). Twenty-eight days old heterozygous TGR and age-matched transgene-negative normotensive Hannover Sprague-Dawley rats (HanSD) were randomly assigned to groups with normal-salt (NS) or high-salt (HS) intake. Nonselective ETA/ETB receptor blockade was achieved with bosentan (100 mg.kg-1.day-1). All male and female HanSD as well as heterozygous TGR on NS exhibited 100 % survival rate until 180 days of age (end of experiment). HS diet in heterozygous TGR induced a transition from benign to malignant phase hypertension. The survival rates in male and in female heterozygous TGR on the HS diet were 46 % and 80 %, respectively, and were significantly improved by administration of bosentan to 76 % and 97 %, respectively. Treatment with bosentan did not influence either the course of hypertension (measured by plethysmography in conscious animals) or the final levels of blood pressure (measured by a direct method in anesthetized rats) in any of the experimental groups of HanSD or TGR. Administration of bosentan in heterozygous TGR fed the HS diet markedly reduced proteinuria, glomerulosclerosis and attenuated the development of cardiac hypertrophy compared with untreated TGR. Our data show that the ET receptor blockade markedly improves the survival rate and ameliorates end-organ damage in heterozygous TGR exposed to HS diet. These findings indicate that the interaction between the RAS and ET systems plays an important role in the development of hypertension-associated end-organ damage in TGR exposed to salt-loading.
The present study was performed to evaluate the role of neuronal nitric oxide synthase (nNOS)-derived nitric oxide (NO) during the developmental phase of hypertension in transgenic rats harboring the mouse Ren-2 renin gene (TGR). The first aim of the present study was to examine nNOS mRNA expression in the renal cortex and to assess the renal functional responses to intrarenal nNOS inhibition by S-methyl-L-thiocitrulline (L-SMTC) in heterozygous TGR and in age-matched transgene-negative Hannover Sprague-Dawley rats (HanSD). The second aim was to evaluate the role of the renal sympathetic nerves in mediating the renal functional responses to intrarenal nNOS inhibition. Thus, we also evaluated the effects of intrarenal L-SMTC administration in acutely denervated TGR and HanSD. Expression of nNOS mRNA in the renal cortex was significantly increased in TGR compared with HanSD. Intrarenal administration of L-SMTC decreased the glomerular filtration rate (GFR), renal plasma flow (RPF) and sodium excretion and increased renal vascular resistance (RVR) in HanSD. In contrast, intrarenal inhibition of nNOS by L-SMTC did not alter GFR, RPF or RVR and elicited a marked increase in sodium excretion in TGR. This effect of intrarenal L-SMTC was not observed in acutely denervated TGR. These results suggest that during the developmental phase of hypertension TGR exhibit an impaired renal vascular responsiveness to nNOS derived NO or an impaired ability to release NO by nNOS despite enhanced expression of nNOS mRNA in the renal cortex. In addition, the data indicate that nNOS-derived NO increases tubular sodium reabsorption in TGR and that the renal nerves play an important modulatory role in this process., L. Červenka, H. J. Kramer, J. Malý, I. Vaněčková, A. Bäcker, D. Bokemeyer, M. Bader, D. Ganten, K. D. Mitchell., and Obsahuje bibliografii