The soil engineer needs to be able to readily identify difficult or problematic soils and to determine the amount of settlement that may occur. This paper deals with the assessment and identification of three types of difficult soils: collapsible soils, swelling soils, and liquefiable soils. In the first instance, the study investigates the effect of some soil properties on wetting-induced collapse strain and the swelling potential of soils. Also, two new methods for predicting soil collapse and swelling potential are developed. The proposed relationships correlate between collapse strain and swelling potential and some soil parameters which are believed to govern soil collapse and swelling. Validation of these two relationships with some data reported in literature is also examined. Furthermore, the paper describes the different steps suggested in a new procedure for soil liquefaction assessment. The procedure was presented in the form of an evaluation guide. In addition, a relationship was suggested for computing the potential for liquefaction. An application of the proposed procedure to a practical case is included in order to validate and illustrate the different steps to be followed in the suggested evaluation procedure.
Stone columns consist of granular material compacted in long cylindrical holes. They are used for improving the strength and consolidation characteristics of compressible soils. However, they are still less effective at supporting heavy loads, since they still cannot transfer applied stresses to deeper layers of soil. The main objective of this numerical study was to investigate the geotechnical performance of a combined foundation system composed of stone columns and piles grouped together under a rigid raft foundation in compressible soil. The failure mechanism of this hybrid foundation system was examined, and configurations optimizing the performance of the combined foundation system were explored. An analytical model was developed for predicting the ultimate carrying capacity of the combined system in compressible soils. It was deduced that combining stone columns and piles in one foundation system improved considerably the system’s carrying capacity. Moreover, the uppermost improvement was observed when the piles were installed on the periphery or edge of the raft foundation, while stones columns were placed at the center area of the raft. The failure of the combined foundation system started from the center of the raft and noticeably extended to its edges. Due to the presence of stone columns in the combined foundation system, the piles did not interact. The areas affected or influenced by the soil–pile interaction also did not overlap.