Four of 28 wild boodies or burrowing bettongs, Bettongia lesueur (Quoy et Gaimard) passed oocysts of species of Eimeria Schneider, 1875. The boodies are surviving on off-shore islands and in large predator-proof sanctuaries on the mainland where they were reintroduced. The boodie is a potoroid marsupial extinct from the mainland of Australia due to predation from red foxes and feral cats. Comparison with other species of the genus Eimeria indicates that the coccidium found represents a new species. Sporulated oocyst of Eimeria burdi sp. n. are pyriform, 21.0-24.0 µm (mean 22.6 µm) by 14.0-16.0 µm (14.9 µm), with a length/width ratio 1.31-1.71 (1.52) and 1-µm-thick yellowish bilayered wall. Micropyle is present at the thinner apex end filled with hyaline body. Polar granules are absent. Sporocysts are ellipsoidal, 10.0-13.5 µm (11.8 µm) by 7.0-8.5 µm (7.4 µm), shape index is 1.42-1.89 (1.63) and a very thin, poorly defined unilayered sporocyst wall is 0.2 µm thick with a domelike almost indistinct Stieda body. Substieda body is indistinct., Frances Hulst, Leah F. Kemp, Jan Šlapeta., and Obsahuje bibliografii
Seven of 12 lacertid lizards Acanthodactylus boskianus (Daiidin, 1802), passed oocysts of an Isospora species. Comparison with other species of the genus Isospora Schneider, 1881 indicated that found coccidium represented a new species, for which the name /. abdallahi is proposed. Sporulated oocysts of /. abdallahi are spherical or subspherical, 25.8 (24.5-29.0) x 23.9 (23.0-25.5) pm, shape index (length/width) being 1.07 (1.00-1.16), with a smooth, bilayered oocyst wall that is slightly yellowish, about 2 pm thick. Micropyle, oocyst residuum and polar granule are absent. Sporocysts are ovoidal, 15.4 (14.0-16.0 x 9.4 (9.0-10.0) pm, with smooth and colorless sporocyst wall, shape index 1.6 (1.5-1.8). Stieda body is dome-like, substieda body spherical to subspherical. Sporocyst residuum is composed of numerous granules of different size, scattered among sporozoites. Most oocysts are passed unsporulated; sporulation was completed within 12 h at 25'C. Endogenous development occurs inside nuclei of enterocytes in the small intestine.
Rhipicephalus camicasi Morel, Mouchet et Rodhain, 1976 is thought to be distributed across Africa, Arabian Peninsula and the Mediterranean region. It belongs to the Rhipicephalus sanguineus (Latreille, 1806) species complex. Mitochondrial genome sequences are becoming frequently used for the identification and differentiation of tick species. In the present study, the entire mitochondrial genome of R. cf. camicasi (~15 kb) collected from a camel in Saudi Arabia was sequenced and compared with mitogenomes of two species of Rhipicephalus Koch, 1844. The mitochondrial genome is 87.8% and 91.7% identical to the reference genome of R. sanguineus (sensu stricto, former "temperate lineage") and Rhipicephalus linnaei (Audouin, 1826) (former "tropical lineage"). The current study delivers a molecular reference for material that resembles R. camicasi. We propose to consider the current material, including the complete mitogenome, as the reference for R. camicasi, until a revision using topotypical material is available.
Cryptosporidium fragile sp. n. (Apicomplexa) is described from black-spined toads, Duttaphrynus melanostictus (Schneider) (Amphibia, Anura, Bufonidae) from the Malay Peninsula. The parasitized animals were directly imported from Malaysia and harboured C. fragile at the time of arrival. Oocysts were subspherical to elliptical with irregular contour in optical section, measuring 6.2 (5.5-7.0) × 5.5 (5.0-6.5) µm. Oocyst wall was smooth and colourless in light microscopy. The endogenous development of C. fragile in the stomach of black-spined toad was analysed in detail using light and electron microscopy. Cryptosporidian developmental stages were confined to the surface of gastric epithelial cells. In transmission experiments, C. fragile has not been infective for one fish species, four amphibian species, one species of reptile and SCID mice. Full length small subunit rRNA gene sequence was obtained. Phylogenetic reconstruction revealed distinct status of C. fragile within the clade of species with gastric localisation including Cryptosporidium muris Tyzzer, 1907, Cryptosporidium serpentis Levine, 1980 and Cryptosporidium andersoni Lindsay, Upton, Owens, Morgan, Mead et Blagburn, 2000. Described characteristics differentiate C. fragile from the currently recognized Cryptosporidium species. Our experience with the description of C. fragile has led us to revise the recommended criteria for an introduction of a new Cryptosporidium species name. C. fragile is the first species described and named from an amphibian host. Its prevalence of 83% (15/18) in black-spined toads within the 3 months after importation calls for strict quarantine measures and import regulation for lower vertebrates.
This study investigates the identity of hookworms parasitising the Australian sea lion, Neophoca cinerea (Péron), from three colonies in South Australia, Australia. The Australian sea lion is at risk of extinction because its population is small and genetically fragmented. Using morphological and molecular techniques, we describe a single novel species, Uncinaria sanguinis sp. n. (Nematoda: Ancylostomatidae). The new species is most similar to hookworms also parasitic in otariid hosts, Uncinaria lucasi Stiles, 1901 and Uncinaria hamiltoni Baylis, 1933. Comparative morphometrics offered limited utility for distinguishing between species within this genus whilst morphological features and differences in nuclear ribosomal DNA sequences delineated U. sanguinis sp. n. from named congeners. Male specimens of U. sanguinis sp. n. differ from U. lucasi and U. hamiltoni by relatively shorter anterolateral and externodorsal rays, respectively, and from other congeners by the relative lengths and angulations of bursal rays, and in the shape of the spicules. Female specimens of U. sanguinis sp. n. are differentiated from Uncinaria spp. parasitic in terrestrial mammals by differences in vulval anatomy and the larger size of their eggs, although are morphologically indistinguishable from U. lucasi and U. hamiltoni. Molecular techniques clearly delimited U. sanguinis sp. n. as a distinct novel species. Obtaining baseline data on the parasites of wildlife hosts is important for the investigation of disease and the effective implementation and monitoring of conservation management.