Hagler and the first named author introduced a class of hereditarily $l_1$ Banach spaces which do not possess the Schur property. Then the first author extended these spaces to a class of hereditarily $l_p$ Banach spaces for $1\leq p<\infty $. Here we use these spaces to introduce a new class of hereditarily $l_p(c_0)$ Banach spaces analogous of the space of Popov. In particular, for $p=1$ the spaces are further examples of hereditarily $l_1$ Banach spaces failing the Schur property.
To investigate the influence of beer consumption on levels of homocysteine (HCY), vitamin B6, B12, folic acid (FA), dimethylglycine (DMG), betaine (BET) and other selected markers. One hundred and sixteen male volunteers were enrolled in the study. A one-month period of alcohol abstinence was followed by a one month when participants drank 830 ml of alcoholic beer every day. After that phase, one month of alcohol abstinence followed. At the beginning and after every phase, blood samples were taken and analysed. Ninety-three participants completed the study. After the phase of alcohol consumption, uric acid (UA) (p<0.0001), antioxidative capacity (AOC) (p=0.02), superoxide dismutase (SOD) (0.025), glutathione reductase (GRH) (0.0001), total cholesterol (p<0.0001), HDL-cholesterol (p<0.0001), Apolipoprotein-AI (ApoAI) (p<0.0001), LDL-cholesterol (p<0.039) and Apolipoprotein B (ApoB) (p<0.009) increased, while vitamin B12 (p=0.0001) and fibrinogen (p<0.0001) decreased. Other tested parameters (DMG, BET, vitamin B6 and FA) did not show any significant changes. UA changes and changes in AOC were statistically significantly correlated (r=0.52, p<0.0001). HCY, DMG and BET levels did not show any statistically significant changes after beer consumption, whereas some markers of redox metabolism increased (UA, AOC, SOD and GRH). A statistically significant correlation denotes the dependence of UA and AOC changes in connection with beer consumption.
Leaf adaptatíons of Quercus ilex L., Phillyrea latifolia L. and Pistacia lentiscus L. to various environmental conditions námely from the viewpoint of the differences of leaf area, dry mass, chlorophyll (Chl) content, sclerophylly index, succulence index and net photosynthetic rate are shown. Irradiance was the most important factor to miluence leaf temperature, stomatal conductance (g^) and transpiration rate (E). Under canopy layer low red-far red ratio reduced Pn- Shade leaves were enriched by Chl b. Chl content and sclerophylly index were good leaf characteristics to express adaptability of plants to microclimate.