We investigated the effect of enhanced atmospheric ammonia (NH3) in combination with low and high nitrogen (LN and HN, respectively) growth medium on photosynthetic characteristics of two maize (Zea mays L.) cultivars (NE5 with high- and SD19 with low N-use efficiency) across long-term growth period and their diurnal change patterns exposed to 10 nl l-1 and 1,000 nl l-1 NH3 fumigation in open-top chambers (OTCs). Regardless of the level of N in medium, increased NH3 concentration promoted maximum net photosynthetic rate (Pmax) and apparent quantum yield (AQY) of both cultivars at earlier growth stages, but inhibited Pmax of NE5 from silking to maturity stage and that of SD19 at maturity stage only above the ambient concentration. Greater positive/less negative responses were predominant in the LN than in the HN treatment, especially for SD19. Dark respiration rate (RD) remained more enhanced in the LN than in the HN treatment for SD19 as well as increased in the LN while decreased in the HN treatment for NE5 at their silking stage, following exposure to elevated NH3 concentration. Additionally, enhanced atmospheric NH3 increased net photosynthetic rate (PN) and stomatal conductance (gs) but reduced intercellular CO2 concentration (Ci) of both cultivars with either the LN or HN treatment during the diurnal period at tasseling stage. The diurnal change patterns of PN and gs showed bimodal curve type and those of Ci presented single W-curve type for NE5, when NH3 concentration was enhanced. As for SD19, single-peak curve type was showed for both PN and gs while single V-curve type for Ci. All results supported the hypothesis that appropriately enhanced atmospheric NH3 can increase assimilation of CO2 by improving photosynthesis of maize plant, especially at earlier growth stages and after photosynthetic "noon-break" point. These impacts of elevated NH3 concentration were more beneficial for SD19 as compared to those for NE5, especially in the LN supply environment. and L. X. Zhang ... [et al.].
Therapeutic approaches to treat joint contracture after anterior cruciate ligament (ACL) reconstruction have not been established. Arthrofibrosis accompanied by joint inflammation following ACL reconstruction is a major cause of arthrogenic contracture. In this study, we examined whether antiinflammatory treatment using low-level laser therapy (LLLT) can prevent ACL reconstruction-induced arthrogenic contracture. Rats underwent ACL transection and reconstruction surgery in their right knees. Unoperated left knees were used as controls. After surgery, rats were reared with or without daily LLLT (wavelength: 830 nm; power output: 150 mW; power density: 5 W/cm2 ; for 120 s/day). We assessed the passive extension range of motion (ROM) after myotomy at one and two weeks post-surgery; the reduction in ROM represents the severity of arthrogenic contracture. ROM was markedly decreased by ACL reconstruction at both time points; however, LLLT partially attenuated the decrease in ROM. One week after ACL reconstruction, the gene expression of the proinflammatory cytokine interleukin-1β in the joint capsule was significantly upregulated, and this upregulation was significantly attenuated by LLLT. Fibrotic changes in the joint capsule, including upregulation of collagen type I and III genes, shortening of the synovium, and thickening were caused by ACL reconstruction and seen at both time points. LLLT attenuated these fibrotic changes as well. Our results indicate that LLLT after ACL reconstruction could attenuate the formation of arthrogenic contracture through inhibition of inflammation and fibrosis in the joint capsule. Thus, LLLT may become a novel therapeutic approach for ACL reconstructioninduced joint contracture.
The reinforcement corrosion is the phenomenon that highly affects the reliability and durability of reinforced concrete structures. From that reason, a lot of researchers in Slovakia and in the world pay their attention to reinforcement corrosion. In the frame of the research work, the reinforced concrete girder bridges were diagnosed and observed. These bridges are influenced by reinforcement corrosion of main girders. The paper is concerned with detection and simulation of corrosion of steel reinforcement in the reinforced concrete. The cracking response of the reinforced concrete beams due to the corrosion effect of the steel reinforcement was analyzed. The effect of corrosion was simulated by the nonlinear numerical analysis using the program ATENA - 2D and 3D module. and Obsahuje seznam literatury