In order to investigate the effects of low irradiation (LI) on cucumber (Cucumis sativus L. cv. Jinyou 35) during a ripening stage, our experiment was carried out in a climate chamber. Two levels of PAR were set for plants: normal irradiation [NI, 600 μmol(photon) m-2 s-1] and low irradiation [LI, 100 μmol(photon) m-2 s-1], respectively. The experiments lasted for 9 d; then both groups of plants were transferred under NI to recover for 16 d. The plants showed severe chlorosis after the LI treatment. Chlorophyll (Chl) a, initial slope, photosynthetic rate at saturating irradiation (P max), light saturation point, maximal photochemical efficiency of PSII (Fv/Fm), electron transport rate of PSII (ETR), soluble protein content, and catalase (CAT) activity in cucumber leaves decreased under LI stress, while Chl b, carotenoids, light compensation point, nonphotochemical quenching (qN), superoxide dismutase (SOD), and malondialdehyde (MDA) exhibited an increasing trend under LI. After 16 d of recovery, values of P max, Fv/Fm, ETR, qN, SOD, CAT, MDA, and soluble protein were close to those of the control after one, three, and five days of the LI treatment, while those kept under LI for 7 and 9 d could not return to the control level. Therefore, 7 d of LI stress was a meteorological disaster index for LI in cucumber at the fruit stage., Z. Q. Yang, C. H. Yuan, W. Han, Y. X. Li, F. Xiao., and Obsahuje seznam literatury
The photosynthetic bacteria (Rhodospirillum rubrum, Synechococcus and Anabaena variabilis) as well as their fragments embedded in isotropic and anisotropic polymer film were investigated. The orientation of photosynthetic pigments inside these organisms was compared, on the basis of the polarised absorption and fluorescence spectra, with the macroscopic orientation of investigated objects seen under microscope. The anisotropy of fluorescence was much higher than anisotropy of absorption. It showed strong influence of the photoselection by polarised radiation on the various bacterial chromophores exhibiting different orientations in the cells and various yields of fluorescence. The dimensions of cells were investigated on the basis of their photographs and by the scattering of the monochromatic radiation. and A. Planner ... [et al.].
Response mechanisms of rainbow trout Oncorhynchus mykiss (Walbaum), experimentally infected with a Danish strain of Gyrodactylus salaris Malmberg, 1957 were investigated using molecular tools (qPCR) and immunohistochemistry. Expression of ten immune-relevant genes and reactivity with five different antibodies in the epidermis of skin and fin tissue were analysed in susceptible but responding rainbow trout. Rainbow trout were susceptible with regard to the parasite strain which initially colonised fins but relocated to the body region as infection progressed. The ten investigated genes encoding the cytokines IL-1β, TNF-α, IFN-γ, IL-10 and markers for adaptive immune activity, such as CD-4, CD-8, TCR-α, IgM, IgT and MHC II, were not found significantly regulated during the course of infection although IFN-γ showed a slight up-regulation. Immunohistochemical analyses showed positive reactivity with antibodies against CD3, B-lymphocytes, neutrophilic granulocytes and collectin but not with mAb against IgM. No staining differences between infected and non-infected skin and fin tissue were detected.
Leaf-specific Farquhar-von Caemmerer-Berry (FvCB) model was fitted to characterize the vertical profile of photosynthetic CO2 response within rice canopy. Leaf-position-specific and canopy average FvCB models were fitted to study a suitable leaf representing photosynthetic parameters at the canopy scale. The results showed that leaf photosynthesis was limited by Rubisco activity or ribulose-1,5-bisphosphate regeneration under field conditions. The maximum rate of carboxylation, maximum rate of electron transport, rate of triose phosphates utilization, and light respiration rate in the FvCB model reached the highest values for the top second leaf and then decreased, while the mesophyll diffusion conductance kept decreased in downward leaves. The integrated photosynthetic CO2-response curves for the top fourth and fifth leaves were appropriate for estimating parameters in the FvCB model at the canopy scale.