European larch (Larix decidua Mill.) and Norway spruce [Picea abies (L.) Karst.] synthesize chlorophyll (Chl) in darkness. This paper compares Chl accumulation in 14-d-old dark-grown seedlings of L. decidua and P. abies after shortterm (24 h) feeding with 5-aminolevulinic acid (ALA). We used two ALA concentrations (1 and 10 mM) fed to cotyledons of both species in darkness and in continuous light. The dark-grown seedlings of L. decidua accumulated Chl only in trace amounts and the seedlings remained etiolated. In contrast, P. abies seedlings grown in darkness were green and had significantly higher Chl content. After ALA feeding, higher protochlorophyllide (Pchlide) content was observed in L. decidua than in P. abies cotyledons incubated in darkness. Although short-term ALA feeding stimulated the synthesis of Pchlide, Chl content did not change significantly in cotyledons incubated in darkness. The Chl accumulation in cotyledons fed with ALA was similar to the rate of Chl accumulation in the controls. Higher Chl accumulation was reported in control samples after illumination: 86.9% in L. decidua cotyledons and 46.4% in P. abies cotyledons. The Chl content decreased and bleaching occurred in cotyledons incubated with ALA in light due to photooxidation. Analyses of Chlbinding proteins (D1 and LHCIIb) by Western blotting proved differences between Chl biosynthesis in L. decidua and P. abies seedlings in the dark and in the light. No remarkable increase was found in protein accumulation (D1 and LHCIIb) after ALA application. Our results showed interspecific difference in Chl synthesis between two gymnosperms. Shortterm ALA feeding did not stimulate Chl synthesis, thus ALA synthesis was not the rate-limiting step in Chl synthesis in the dark., N. Maximová, Ľ. Slováková., and Obsahuje bibliografii
We studied the seasonal changes in water relations, chlorophyll a fluorescence, and leaf saccharide contents of the tropical flood-tolerant trees Acosmium nitens, Campsiandra laurifolia, Eschweilera tenuifolia, Symmeria paniculata, and Psidium ovatifolium. Xylem water potential increased with flooding to a larger extent than leaf sap osmotic potential in all the species, and soluble sugars contributed up to 66 % of osmotic potential at maximum flooding. Starch was accumulated in leaves. Maximum quantum yield of photosystem 2 decreased in emerged leaves, values being always higher than 0.76. Daily maximum net photosynthetic rate and leaf conductance decreased in all the species. This reduction was associated in all the species but S. paniculata with the absence of a compensatory increase in non-photochemical quenching. and E. Rengifo, W. Tezara, A. Herrera.