To examine whether exposure to sodium salicylate disrupts expression of vesicular glutamate transporter 3 (VGLUT3) and whether the alteration in expression corresponds to increased risk for tinnitus. Rats were treated with saline (control) or sodium salicylate (treated) Rats were examined for tinnitus by monitoring gap-pre-pulse inhibition of the acoustic startle reflex (GPIAS). Auditory brainstem response (ABR) was applied to evaluate hearing function after treatment. Rats were sacrificed after injection to obtain the cochlea, cochlear nucleus (CN), and inferior colliculus (IC) for examination of VGLUT3 expression. No significant differences in hearing thresholds between groups were identified (p>0.05). Tinnitus in sodium salicylate-treated rats was confirmed by GPIAS. VGLUT3 encoded by solute carrier family 17 members 8 (SLC17a8) expression was significantly increased in inner hair cells (IHCs) of the cochlea in treated animals, compared with controls (p<0.01). No significant differences in VGLUT3 expression between groups were found for the cochlear nucleus (CN) or IC (p>0.05). Exposure to sodium salicylate may disrupt SLC17a8 expression in IHCs, leading to alterations that correspond to tinnitus in rats. However, the CN and IC are unaffected by exposure to sodium salicylate, suggesting that enhancement of VGLUT3 expression in IHCs may contribute to the pathogenesis of tinnitus.
Formulaes were developed for the range error due to descreet generation and gain of photoelectrons in multiphotoelectron case for some signal processing methods, as constant threshold and constant fraction of photomultiplier current or charge and some others. In many methods, including near optimum estimation, the error decreases when filter response width increases. Simple estimation methods can give nearly as good results as optimum methods, when using proper filtration and fraction values. Simulation and experimental results are in fair agreement with the theory. The results can be used to improve many existing laser stations.