Using an air-conditioned single-plant chamber, shoots of two dwarf beán cultivars were exposed for 5 oř 6 h to O3 concentrations, ranging from 0.3 to 0.8 pmol mol**. Diuing exposure water vapour, CO2, and O3 exchange rates of shoots were monitored with the aim to quantify possible differences between cultivars in sensitivity of stomata and mesophyll to O3 uptake. Aíter exposure changes in the water holding capacity of the treated leaves were also estůnated, combining pressure bomb, 3-gauge, and leaf chamber techniques. Rates of change of stomatal (Vg) and mesophyll (Vg,) conductances increased linearily with increase in the absorbed O3 flux via the stomata (Qg), the direshold for stomatal response being lower than that for mesophyll response. Above the threshold values of Qg, sensitivity of V„ to Qg was lower than ďiat of Vg. The water holding capacity of leaves decreased with increase in Qg, although no distinct threshold Qg was found. Cultivar differences in O3 sensitivities of Vg were statístically distinguishable on the stomatal segment of CO2 uptake route ordy.
Diarrhoea is a common clinical condition; its pathogenesis is strongly associated with gut microbiota dysbiosis. Limonitum is a well-known traditional Chinese medicine that exerts appreciable benefits regarding the amelioration of diarrhoea. However, the mechanism through which Limonitum ameliorates diarrhoea remains unclear. Here, the efficacy and underlying mechanism of Limonitum decoction (LD) regarding diarrhoea were explored from the aspect of gut microbiota. Castor oil (CO) was used to induce diarrhoea in mice, which were then used to evaluate the effects of LD regarding the timing of the first defecation, diarrhoea stool rate, degree of diarrhoea, diarrhoea score, intestinal propulsive rate, and weight of intestinal contents. The concentrations of short-chain fatty acids (SCFAs), including acetic, propionic, isobutyric, butyric and valeric acids, were analysed by gas chromatography-mass spectrometry (GC-MS). The 16S rRNA high-throughput sequencing technology was applied to evaluate changes in the gut microbiota under exposure to LD. LD was found to effectively ameliorate the symptoms of diarrhoea, and the diversity and relative abundance of gut microbiota were restored to normal levels following LD treatment. Additionally, LD significantly restored the observed reductions in SCFAs. These results provide strong evidence that LD can sufficiently ameliorate diarrhoea in mice by regulating their gut microbiota. The findings presented here highlight that Limonitum may constitute a prospective remedy for diarrhoea.
Two models of reaction-diffusion are presented: a non-Fickian diffusion model described by a system of a parabolic PDE and a first order ODE, further, porosity-mineralogy changes in porous medium which is modelled by a system consisting of an ODE, a parabolic and an elliptic equation. Existence of weak solutions is shown by the Schauder fixed point theorem combined with the theory of monotone type operators.
Von Willebrand disease is a commonly inherited bleeding disorder caused by defects of von Willebrand factor (vWF). In the most common valve diseases, aortic valve stenosis (AVS) and mitral valve regurgitation (MVR), a bleeding tendency has been described in a number of patients. This has been associated to a high turbulence of blood flow through the compromised valve, promoting degradation of vWF with loss of high-molecular-weight multimers of vWF (HMWM), leading to an acquired von Willebrand syndrome (AvWS). We analysed three groups of patients, one affected by AVS, treated with transcatheter aortic valve implantation (TAVI), the second group of patients affected by MVR, treated with Mitraclip® mitral valve repair. The third group was represented by patients also affected by AVS, but not eligible for TAVI and treated with standard surgery. A fourth group of patients that underwent percutaneous coronary intervention (PCI) with stenting was used as a control. Our results demonstrated that the level of vWF measured as antigen concentration (vWF:Ag) increases in all cohorts of patients after treatment, while in control PCI patients, no modification of vWF:Ag has been registered. Western blot analysis showed only a quantitative loss of vWF in the pre-treatment time, but without significant HMWM modification. The monitoring of the vWF:Ag concentration, but not the quality of HMWM, can indicate the status of blood flow in the treated patients, thus introducing the possibility of using the vWF antigen detection in monitoring the status of replaced or repaired valves.