Let G be a group. If every nontrivial subgroup of G has a proper supplement, then G is called an aS-group. We study some properties of aS-groups. For instance, it is shown that a nilpotent group G is an aS-group if and only if G is a subdirect product of cyclic groups of prime orders. We prove that if G is an aS-group which satisfies the descending chain condition on subgroups, then G is finite. Among other results, we characterize all abelian groups for which every nontrivial quotient group is an aS-group. Finally, it is shown that if G is an aS-group and |G| ≠ pq, p, where p and q are primes, then G has a triple factorization., Reza Nikandish, Babak Miraftab., and Obsahuje seznam literatury
In this paper we characterize the convex dominating sets in the composition and Cartesian product of two connected graphs. The concepts of clique dominating set and clique domination number of a graph are defined. It is shown that the convex domination number of a composition $G[H]$ of two non-complete connected graphs $G$ and $H$ is equal to the clique domination number of $G$. The convex domination number of the Cartesian product of two connected graphs is related to the convex domination numbers of the graphs involved.