Human body reacts to physical, chemical and biological insults with a complex inflammatory reaction. Crucial components and executors of this response are endothelial cells, platelets, white blood cells, plasmatic coagulation system, and complement. Endothelial injury and inflammation are associated with elevated blood levels of cell membrane-derived microvesicles. Increased concentrations of microvesicles were found in several inflammatory reactions and diseases including acute coronary syndromes, stroke, vasculitis, venous thromboembolism, multiple sclerosis, rheumatoid arthritis, systemic lupus ery-thematosus, anti-phospholipid antibody syndrome, inflammatory bowel disease, thrombotic thrombocy-topenic purpura, viral myocarditis, sepsis, dissemi-nated intravascular coagulation, polytrauma, and burns. Microvesicles can modulate a variety of cellular processes, thereby having an impact on pathogenesis of diseases associated with inflammation. Microvesicles are important mediators and potential biomarkers of systemic inflammation. Measurement of inflammatory cell-derived microvesicles may be utilized in diagnostic algorithms and used for detection and determination of severity in diseases associated with inflammatory responses, as well as for prediction of their outcome. This review focuses on the mechanisms of release of microvesicles in diseases associated with systemic inflammation and their potential role in the regulation of cellular and humoral interactions. and Corresponding author: Jan Janota