Optimalizace radiační ochrany byla vždy prioritou, zejména v pediatrii. Vzhledem ke stále rostoucímu počtu vyšetření je nutné se zaměřit na základní principy radiační ochrany - zdůvodnění a optimalizaci. Užitečným nástrojem optimalizace je stanovení místních diagnostických referenčních úrovní (MDRÚ). Další klíčovou roli v optimalizaci hraje nastavení a přizpůsobení radiologických přístrojů dětskému pacientovi. I když je každá modalita specifická, lze dodržet několik obecných pravidel. Zásadní je úprava expozičního nastavení, orgánové automatiky, případně použití manuálního režimu. U CT dávku významně ovlivňuje volba správného vyšetřovacího protokolu specifického podle věku, váhy nebo diagnózy. Optimalizace v radiační ochraně představuje komplex vzájemně na sebe navazujících kroků. I v pediatrii optimalizace neznamená, že dávka musí být minimální za každou cenu. Optimalizace znamená, že dávka musí být minimální pro získání kvalitní diagnostické informace., Optimization of radiation protection has always been a priority, especially in pediatrics. Due to the growing number of examinations it is necessary to focus on the basic principles of radiation protection - justification and optimization. A useful tool for optimaliza-tion is establishing local diagnostic reference levels (DRL). Another key role is the setting and adjustment of the radiological device used for children. Although each modality is specific, some general rules exist. The adjustment of exposure settings, automatic exposure control, or using the manual mode. In CT, the dose is significantly affected by the choice of the right examination protocol according to patient age, bodymass or diagnosis. Optimization of radiation protection is a complex of many interconnected steps. Optimization, also in pediatrics does not mean that the dose must be at minimum at all costs. Optimization means that the dose must be minimal for, Kateřina Daníčková, Dáša Chmelová, Miloslav Roček, and Literatura
Cíl. Srovnání efektivní dávky a orgánové dávky na oční čočku při vyšetřeních mozku multidetektorovým CT přístrojem (MDCT) s nastavenou automatickou modulací proudu, provedené výpočetním algoritmem iterativní rekonstrukce v obrazovém prostoru (IRIS) a algoritmem filtrované zpětné projekce (FBP). Metoda. Z celkem 80 neakutních MDCT mozku s nastavením automatické proudové modulace bylo 40 provedeno protokolem založeným na IRIS a 40 dalších protokolem s FBP. Všechna vyšetření byla realizována na MDCT přístroji SOMATOM Definition AS+ (Siemens Healthcare, Forchheim, Německo). Efektivní dávka byla vypočtena z CT dávkového indexu (CTDIvol) a dose length product (DLP) v prostředí softwaru ImPACT. Orgánové dávky na oční čočku byly vypočteny z hodnot mAs aplikovaných v úrovni oční čočky. Obrazová a diagnostická kvalita rekonstruovaných obrazů byla subjektivně hodnocena dvěma zkušenými atestovanými radiology v zaslepeném porovnání. Bylo také provedeno kvantitativní statistické hodnocení úrovně obrazového šumu. Výsledky. TJ IRIS byla průměrná efektivní dávka na oční čočku 1,04 ± 0, 21 mSv, u FBP 1,53 ± 0,29 mSv, což představuje snížení o přibližně 32 % ve prospěch IRIS. Průměrná orgánová dávka byla u IRIS 26,9 ± 1, 9 mGy a u FBP 40,2 ± 3,2 mGy, což představuje redukci o 33,1 %. Při subjektivním porovnání vjemu kvality obrazu nebyl zjištěn významný rozdíl (p = 0,21). V rámci kvantitativního hodnocení úrovně šumu bylo zaznamenáno malé, ale již statisticky významné zvýšení na obrazech rekonstruovaných algoritmem IRIS (p <0,01). Závěr. Použití výpočetního algoritmu IRIS při MDCT vyšetření mozku umožňuje redukovat efektivní a orgánovou dávku zachycenou oční čočkou až přibližně o jednu třetinu při diagnosticky nevýznamném rozdílu v kvalitě zobrazení v porovnání s algoritmem FBP., Aim. To compare effective and organ radiation dose to the eye lens in multidetector CT (MDCT) examinations of the brain, utilising either iterative reconstruction in image space (IRIS) or filtered back projection (FBP) algorithm. Method. Of 80 non-acute brain MDCT examinations, 40 were performed with IRIS reconstruction algorithm and other 40 with FBP algorithm. All examinations were performed on MDCT system SOMATOM Definition AS+ (Siemens Healthcare, Forchheim, Germany). Calculation of the effective dose was done by ImPACT software (Impact, London) using CT dose index (CTDIvol) and dose length product (DLP) values. Organ dose to the eye lens was calculated from mAs value applied to the slices containing the lens. Diagnostic image quality of reconstructed data was evaluated by two experienced radiologists in a blinded fashion. Results. For IRIS, the average effective dose to the eye lens was 1.04 ± 0.21 mSv and for FBP 1.53 ± 0.29 mSv, with a reduction of approximately of 32%. The average organ dose for IRIS was 26.9 ± 1.9 mGy and 40.2 ± 3.2 mGy for FBP, with a dose reduction of 33.1%. A comparison of image quality showed no statistically significant difference (p = 0.21). Quantitative analysis of image noise revealed slightly increased noise levels in the IRIS group, the difference was statistically significant (p < 0.01). Conclusion. IRIS reconstruction algorithm in cerebral MDCT examinations can reduce the effective and eye lens organ dose approximately by one third, without significant deterioration of image quality compared to FBP reconstruction algorithm FBP., and Jiří Jandura, Jan Žižka, Tomáš Kvasnička, Jan Grepl, Ludovít Klzo