The design and evaluation of algorithms for adaptive stochastic control of the reservoir function of a water reservoir using an artificial intelligence method (learned fuzzy model) are described in this article. This procedure was tested on the Vranov reservoir (Czech Republic). Stochastic model results were compared with the results of deterministic management obtained using the method of classical optimisation (differential evolution). The models used for controlling of reservoir outflow used single quantile from flow duration curve values or combinations of quantile values from flow duration curve for determination of controlled outflow. Both methods were also tested on forecast data from real series (100% forecast). Finally, the results of the dispatcher graph, adaptive deterministic control and adaptive stochastic control were compared. Achieved results of adaptive stochastic management were better than results provided by dispatcher graph and provide inspiration for continuing research in the field.
This paper presents the entire formulation of longitudinal reinforcement minimisation in a concrete structure of known sections and shape under loading by normal force and bending moment. Constraint conditions are given by the conditions of structure reliability in accordance with the relevant codes for ultimate strength and applicability of the sections specified by a designer. Linearization of the non-linear formulation is described, and possibilities of applying linear programming algorithms are discussed. The functioning of the process described is demonstrated on a plane frame structure design. and Obsahuje seznam literatury