This study used an experimental early rehabilitation model combining an enriched environment, multisensory (visual, acoustic and olfactory) stimulation and motor training after traumatic brain injury (via fluid-percussion model) to simulate early multisensory rehabilitation. This therapy will be used by brain injured patients to improve neural plasticity and to restore brain integration functions. Motor dysfunction was evaluated using a composite neuroscore test. Direct structural effects of traumatic brain injury were examined using Fluoro-Jade staining, which allows identification of degenerating neural cell bodies and processes. Animals in the rehabilitation model group performed significantly better when tested for neuromotor function than the animals in standard housing in the 7-day and 15-day interval after injury (7d: p=0.005; 15d: p<0.05). Statistical analysis revealed significantly lower numbers of Fluoro-Jade positive cells (degenerating neurons) in the rehabilitation model group (n=5: mean 13.4) compared to the standard housing group (n=6: mean 123.8) (p<0.005). It appears that the housing of animals in the rehabilitation model led to a clear functional increase in neuromotor functions and to reduced neural loss compared with the animal group in standard housing., M. Lippert-Grüner. M. Maegele, J. Pokorný, D. N. Angelov, O. Švestková, M. Wittner, S. Trojan., and Obsahuje bibliografii a bibliografické odkazy
The aim of the present study was to quantify the effect of multisensory rehabilitation on rats’ cognition after an experimental brain trauma and to assess its possible clinical implications. The complex intermittent multisensory rehabilitation consisted of currently used major therapeutic procedures targeted at the improvement of cognitive functions; including multisensory and motor stimulation and enriched environment. We have confirmed this positive effect of early multisensory rehabilitation on the recovery of motor functions after traumatic brain injury. However, we have been able to prove a positive effect on the recovery of cognitive functions only with respect to the frequency of efficient search st rategies in a Barnes maze test, while results for search time and travelled distance were not significantly different between st udy groups. We have concluded that the positive effects of an early treatment of functional deficits are comparable with the clinical results in early neurorehabilitation in human patients after brain trauma. It might therefore be reasonable to apply these experimental results to human medical neurorehabilitation care., M. Lippert-Grüner ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy