Oxidační stres je do určité míry fyziologickým důsledkem řady biochemických a bioenergetických pochodů a doprovází aerobní organizmy po celý jejich život. Podílí se na přirozeném stárnutí organizmu a významnou úlohu zastává v imunologické odpovědi. Každý organizmus má vyvinutý komplexní antioxidační systém, který ho chrání před radikálovým poškozením. Selhání tohoto vysoce specializovaného systému může vést k nevratnému poškození biomolekul a závažně tím poškodit jejich fyziologické funkce. Radikálové poškození a ztráta funkcí mozkových buněk je charakteristická pro neurodegenerativní onemocnění jako Alzheimerova choroba (ACH). To je důvod, proč se zvýšený oxidační stres považuje za iniciální impulz vzniku tohoto závažného progredientního onemocnění. Článek podává přehled patobiochemických mechanizmů oxidačního stresu v mozkové tkáni doprovázejících rozvoj Alzheimerovy choroby., Oxidative stress is to some extent a physiological consequence of biochemical and bioenergetic processes and accompanies aerobic organisms throughout their lives. Oxidative stress contributes to the natural aging and plays an important role in the immune response. Each organism has developed a complex system of antioxidant defense which protects it against the free radical damage. The failure of this highly specialized system can lead to irreversible damage to biomolecules and thereby seriously damage their physiological functions. Radical damage and loss of functions of brain cells is characteristic of neurodegenerative diseases such as Alzheimer’s disease. This is the reason why the increased oxidative stress is thought to be the initial impetus for developing this progressive disease. This article brings an overview of pathobiochemical mechanisms of oxidative stress in the brain tissue that accompany progression of Alzheimer´s disease., Chmátalová Z., Skoumalová A., and Literatura
Při dlouhodobém hladovění je nedostatečný přívod energie kompenzován z vlastních zdrojů organizmu. Zásoby glykogenu jsou rychle vyčerpány, produkce inzulínu klesá. Zpočátku slouží jako zdroj energie především bílkoviny, později jsou přednostně utilizovány tuky. V každém případě dochází však do určité míry k vyčerpání libové tělesné hmoty s vývojem deplece iontů, především uložených intracelulárně, t.j. fosfátů, kalia a magnézia. Jejich plazmatické hladiny zůstávají během malnutrice, díky uvolňování z buněk, v referenčních mezích. Deplece postihuje i významné metabolické kofaktory, kterými jsou stopové prvky a vitaminy, především thiamin. Po zahájení realimentace a přívodu glukózy se cukry stávají opět primárním zdrojem energie a katabolismus tuků a bílkovin klesá. Uvolňuje se sekrece inzulínu a při nástupu anabolismu se tok uvedených iontů obrací zpět do buněk. Může dojít k extrémnímu poklesu jejich plasmatických hladin a k akutnímu nedostatku thiaminu. V těžších případech vzniká realimentační syndrom (RS). V souvislosti s tím může dojít k závažným dysfunkcím řady orgánů, včetně srdečního selhání. Práce uvádí postupy doporučené pro rozpoznání rizika malnutrice i rizika vývoje RS. Jsou popsány jeho možné pestré klinické příznaky. Jsou uvedeny postupy klinického i laboratorního monitorování při zahájení realimentace u nemocných, kteří jsou v riziku vývoje RS. Dále jsou uvedeny postupy při úpravě iontových deplecí při manifestaci RS, jejich agresivita je vztahována k plasmatickým hodnotám fosfátu, kalia a magnézia., During long lasting starvation the insufficient supply of energy is compensated from own sources of organism. The store of glycogen is soon exhausted and the production of insulin decreases. During initial period the main source of energy used is all body protein. Later on lipids are preferred. However to some extent the lean body mass is always depleted. This depletion is accompanied by decreased intracellular pool of phosphates, potassium and magnesium. Thanks to gradual release from catabolic cells during malnutrition, their plasma levels remain in reference ranges for long time. The depletion affects also the important metabolic factors, such as the trace elements and vitamins, thiamine especially. During realimentation sugars become the main source of energy again and catabolism of fat and protein is interrupted. The restored secretion of insulin and start of anabolism turn the shift of the afore mentioned ions back into the cells. Their plasma levels as well as the levels of thiamine may extremely fall in short time. As consequence of these changes the refeeding syndrome (RS) may develop. The severe multiorgan dysfunction may develop including the cardiac failure. The paper presents the proceedings recommended for the malnutrition risk screening and also for the detection of risk of RS. The possible diverse clinical manifestations of this syndrome are presented. The article follows the description of clinical and laboratory monitoring at the start of realimentation in severely malnourished high risk patients. When RS is already diagnosed, the described corrections of ion dysbalances are sometimes aggressive, according to their plasma levels., Kazda A., Brodská, H., Novák F., Ševela S., and Literatura