Pulse dye densitometry (PDD) enables the evaluation of hemodynamic state as well as liver function. A repeated examination, even after a short pause (or under stress condition), enables to follow safely the dynamics of liver pathology. From presented parameters we have evaluated as reliable the C5-clearance, an expression of equilibrium state in the two compartment liver system. Furthermore, T-index expresses ratio of C5 value to cardiac output, it is a sensitive indicator of the blood pole, i.e. sinusoidal uptake, which is in very good correlation with staging of hepatopathies. The isolated h constant in correlation to T-index is valuable For functional grading. The Japanese automatic analyzer of indocyanine green (ICG) dilution and elimination curves, after incorporation of a two compartment mathematical mode l, becomes more useful for complex hepatological diagnostics. Non-invasive PDD is becoming of uppermost importance to clinic al interest, yielding comparable results as other complicated and invasive examinations and may be, therefore, repeated in short time intervals for different indications with minimal stress of examined patient., J. A. Tichý ... [et al.]., and Obsahuje seznam literatury
In the seventies of the past century ballistocardiography had been thought to be obsolete in cardiology for impossibility of objective calibration. In the present work the quantitative ballistocardiography (Q-BCG) for measurement of systolic force (F) and minute cardiac force (MF) in sitting subject was described. The new principle of piezoelectric transducer enabled to register the force caused by the heart and blood movement, which was not measured before. The calibration proved that the action of the force on the transducer was expressed quantitatively without the amplitude-, time-, and phase deformation. The close relationship of skeletal muscle force and F was proved. The F and MF changed under different physiological conditions (age, partial pressure of oxygen, body weight, skeletal muscle force). It was shown that the systolic force (F) and minute cardiac force (MF) are the physiological parameters neurohumorally regulated similarly as the heart rate or systolic volume., Z. M. Trefný ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy