Odlupováním vrstevnatých materiálů (např. grafitu) lze připravit 2D krystaly s tloušťkou jednoho nebo několika málo atomů. Nejznámějším takovým 2D materiálem je grafen (monovrstva grafitu), nicméně v současnosti existují a intenzivně se zkoumají desítky podobných struktur. Příspěvek podává základní přehled o 2D materiálech, jejich vlastnostech, metodách přípravy a možných aplikacích., Layered materials (such as graphite) can be exfoliated to produce 2D crystals with a thickness of one of just a few atoms. The best known 2D material is graphene (monolayer of graphite), yet there are tens of similar structures, which are being studied intensively at the moment. This article presents a brief summary of 2D materials, their properties, methods of preparation and potential application., Zdeňka Hájková, Martin Ledinský, Matěj Hývl, Aliaksei Vetushka, Antonín Fejfar, Jaroslava Řáhová, Otakar Frank., and Obsahuje bibliografické odkazy
Sunlight is the source of energy for most of the processes on the Earth‘s surface and it represents also the ulitmate renewable energy source for human civilisation. The invention of photovoltaic solar cells and their development to the present highly sophisticated forms represent a story worth telling. The history of photovoltaics contains surprising and dramatic moments as well as steady progress, on a par with the rise of microelectronics. Further, there may still be some surprising new paths, similar to the recent development of hybrid perovskite solar cells., Antonín Fejfar, Martin Ledinský., and Obsahuje seznam literatury
Organicko-anorganické perovskity se nedávno ukázaly jako nadějný materiál pro výrobu levných tenkovrstvých sllunečních článků s vysokou účinností. Příspěvek představuje strukturu perovskitů, jednoduché metody jejich přípravy a slibnou perspektivu tandemového slunečního článku perovskitu s křemíkem. Zmíněny jsou též dvě slabiny, které zatím brání komerční výrobě perovskitových slunečních článků., Recently, organic-inorganic perovskites have emerged as a promising material for low costs and highly efficient thin film solar cells. This article presents the structure of perovskites, their simple preparation methods and the great potential of perovskite-silicon tandem solar cells. Two major weaknesses are also discussed, which have so far hindered commercial application of perovskite solar cells., Zdeňka Hájková, Lucie Abelová, Tereza Schönfeldová, Neda Neykova, Jakub Holovský, Martin Ledinský., and Obsahuje bibliografii
The goal of this paper is the investigation of erbium and ytterbium doped potassium-lanthanum phosphate glasses. The laser active medium Er,Yb: glass, it is suitable for the generation of laser radiation in the 1.53 μm region which comes into the part of eye-safe radiation (i.e. radiation that does not penetrate to the retina). Laser radiation in this spectral region can be used in radar, ranging, in medical applications, and optical communications. One of the laser generating radiation in the range of 1.5 μm region is the Er,Yb: glass laser which is the goals of this article. The active medium of this laser was pumped longitudinally by coherent radiation of a laser diode the radiation with wavelength 969 nm. Laser and spectroscopic properties of the best working sample were examined in the temperature range 80 K - 300 K. From the experimental results it was found that in the range of this temperature interval the only minimal changes of the emitted laser radiation parameters of designed Er,Yb: glass laser is appeared. and Cílem tohoto článku je zkoumání erbiem a ytterbiem dopovaných draselno-lanthaných fosfátových skel. Laserové aktivní prostředí Er,Yb:sklo je vhodné pro generaci laserového záření o vlnové délce 1,53 μm, které spadá do oblasti pro oko bezpečného tzv. ''eye-safe'' záření, neboť neproniká na sítnici oka. Takové laserové záření může být využito v radarech, dálkoměrech, v lékařských aplikacích a optických komunikacích. Jedním ze zdrojů generujících záření v oblasti 1,5 μm je Er,Yb:sklo laser. Jeho aktivní prostředí bylo čerpané podélně koherentním zářením laserové diody vyzařující na vlnové délce 969 nm. Laserové a spektroskopické vlastnosti nejlépe pracujícího vzorku byly zkoumány v rozsahu teplot 80 K -300 K. Z experimentálních výsledků bylo zjištěno, že při změně teploty v uvedeném rozsahu dochází jen k minimálním změnám parametrů emitovaného laserového záření zkonstruovaného Er,Yb:sklo laseru.