Water deficit is one of the major limiting factors in vegetation recovery and restoration in loess, hilly-gully regions of China. The light responses of photosynthesis in leaves of two-year old Prunus sibirica L., Hippophae rhamnoides L., and Pinus tabulaeformis Carr. under various soil water contents were studied using the CIRAS-2 portable photosynthesis system. Light-response curves and photosynthetic parameters were analyzed and fitted using the rectangular hyperbola model, the exponential model, the nonrectangular hyperbola model, and the modified rectangular hyperbola model. Under high light, photosynthetic rate (PN) and stomatal conductance (gs) were steady and photoinhibition was not significant, when the relative soil water content (RWC) varied from 56.3-80.9%, 47.9-82.9%, and 33.4-92.6% for P. sibirica, H. rhamnoides, and P. tabulaeformis, respectively. The light-response curves of PN, the light compensation point (LCP), and the dark respiration rate (RD) were well fitted using the above four models. The nonrectangular hyperbola was the best model in fitting the data; the modified rectangular hyperbola model was the second, and the rectangular hyperbola model was the poorest one. When RWC was higher or lower than the optimal range, the obvious photoinhibition and significant decrease in PN with increasing photosynthetic photon flux density (PPFD) were observed in all three species under high light. The light saturation point (LSP) and apparent quantum yield also decreased significantly, when the upper limit of PPFD was 200 μmol m-2 s-1. Under these circumstances, only the modified rectangular hyperbola model was able to fit well the curves of the light response, LCP, LSP, RD, and light-saturated PN. and Y. Lang ... [et al.].
Populus x euramericana cv. ‘Neva’ is an important tree species in northern China. In the study, we used its potted oneyear- old seedlings as experimental material and established three treatments (CK, 0.5X, and 1.0X) according to the concentrations of phenolic acids in order to examine the effects of different concentrations on the photosynthetic characteristics and growth of poplar. With increasing concentrations of phenolic acids, the net photosynthetic rate, stomatal limitation, transpiration rate, apparent quantum yield, photochemical quenching coefficient, electron transport rate, chlorophyll content, and total biomass decreased significantly. The intercellular CO2 concentration, light-compensation point, nonphotochemical quenching, malondialdehyde content, and root/shoot ratio increased significantly. Peroxidase and superoxide dismutase activities initially decreased and then increased. We concluded that phenolic acids significantly inhibited poplar’s photosynthesis and the higher phenolic acid concentration, the greater inhibition of photosynthesis occurred. This inhibition effect was mainly caused by nonstomatal factors. Phenolic acids induced noticeable photoinhibition, resulted in the irreversible damage of membrane structure, and then changed intracellular metabolic processes. To cope with phenolic acid stress, poplar seedlings increased dissipation of excess light energy and distributed relatively more biomass to underground parts within carbon allocation., D. F. Xie, G. C. Zhang, X. X. Xia, Y. Lang, S. Y. Zhang., and Obsahuje bibliografii