The collection comprises the relevance judgments used in the 2023 LongEval Information Retrieval Lab (https://clef-longeval.github.io/), organized at CLEF. It consists of three sets of relevance judgments:
1) Relevance judgments for the heldout queries from the LongEval Train Collection (http://hdl.handle.net/11234/1-5010).
2) Relevance judgments for the short-term persistence (sub-task A) queries from the LongEval Test Collection (http://hdl.handle.net/11234/1-5139).
3) Relevance judgments for the long-term persistence (sub-task B) queries from the LongEval Test Collection (http://hdl.handle.net/11234/1-5139).
These judgments were provided by the Qwant search engine (https://www.qwant.com) and were generated using a click model. The click model output was based on the clicks of Qwant's users, but it mitigates noise from raw user clicks caused by positional bias and also better safeguards users' privacy. Consequently, it can serve as a reliable soft relevance estimate for evaluating and training models.
The collection includes a total of 1,420 judgments for the heldout queries, with 74 considered highly relevant and 326 deemed relevant. For the short-term sub-task queries, there are 12,217 judgments, including 762 highly relevant and 2,608 relevant ones. As for the long-term sub-task queries, there are 13,467 judgments, with 936 being highly relevant and 2,899 relevant.
The collection consists of queries and documents provided by the Qwant search Engine (https://www.qwant.com). The queries, which were issued by the users of Qwant, are based on the selected trending topics. The documents in the collection are the webpages which were selected with respect to these queries using the Qwant click model. Apart from the documents selected using this model, the collection also contains randomly selected documents from the Qwant index.
The collection serves as the official test collection for the 2023 LongEval Information Retrieval Lab (https://clef-longeval.github.io/) organised at CLEF. The collection contains test datasets for two organized sub-tasks: short-term persistence (sub-task A) and long-term persistence (sub-task B). The data for the short-term persistence sub-task was collected over July 2022 and this dataset contains 1,593,376 documents and 882 queries. The data for the long-term persistence sub-task was collected over September 2022 and this dataset consists of 1,081,334 documents and 923 queries. Apart from the original French versions of the webpages and queries, the collection also contains their translations into English.
The collection consists of queries and documents provided by the Qwant search Engine (https://www.qwant.com). The queries, which were issued by the users of Qwant, are based on the selected trending topics. The documents in the collection were selected with respect to these queries using the Qwant click model. Apart from the documents selected using this model, the collection also contains randomly selected documents from the Qwant index. All the data were collected over June 2022. In total, the collection contains 672 train queries, with corresponding 9656 assessments coming from the Qwant click model, and 98 heldout queries. The set of documents consist of 1,570,734 downloaded, cleaned and filtered Web Pages. Apart from their original French versions, the collection also contains translations of the webpages and queries into English. The collection serves as the official training collection for the 2023 LongEval Information Retrieval Lab (https://clef-longeval.github.io/) organised at CLEF.