Hillslope hydrology in agricultural landscapes is complex due to a variety of hydropedological processes and field management possibilities. The aim was to test if there are any differences in soil properties and water regime along the hillslope and to compare vineyard rows (vine) with inter-rows (grass) area for those properties. The study determined that there are significant differences in the contents of soil particle fractions, pH, and humus content along the slope (P < 0.0001), with lower confidence level in bulk density (P < 0.05). Differences between row and inter-row space were significant for the pH, humus, and silt content, but for sand and clay content, and bulk density differences were not determined. The study determined differences in soil water content among five slope positions (P < 0.0001), and between row and inter-row vineyard space (all with P < 0.05). Where in the upper slope positions (e. g., P1) soil water content was higher than on lower slope positions. Higher soil water content was observed at higher slope positions, associated with clay content. However, it can be concluded that the retention of moisture on the slope is more influenced by local-scale soil properties (primarily soil texture) and variability of the crop (row/inter-row) than the position on the slope.
Global climate change is projected to continue and result in prolonged and more intense droughts, which can
increase soil water repellency (SWR). To be able to estimate the consequences of SWR on vadose zone hydrology, it is
important to determine soil hydraulic properties (SHP). Sequential modeling using HYDRUS (2D/3D) was performed on
an experimental field site with artificially imposed drought scenarios (moderately M and severely S stressed) and a control
plot. First, inverse modeling was performed for SHP estimation based on water and ethanol infiltration experimental data, followed by model validation on one selected irrigation event. Finally, hillslope modeling was performed to assess water balance for 2014. Results suggest that prolonged dry periods can increase soil water repellency. Inverse modeling was successfully performed for infiltrating liquids, water and ethanol, with R2 and model efficiency (E) values both > 0.9. SHP derived from the ethanol measurements showed large differences in van Genuchten-Mualem (VGM) parameters for the M and S plots compared to water infiltration experiments. SWR resulted in large saturated hydraulic conductivity (Ks) decrease on the M and S scenarios. After validation of SHP on water content measurements during a selected irrigation event, one year simulations (2014) showed that water repellency increases surface runoff in non-structured soils at hillslopes.