Human post-edited test sentences for the WMT 2017 Automatic post-editing task. This consists in 2,000 English sentences belonging to the IT domain and already tokenized. Source and target segments can be downloaded from: https://lindat.mff.cuni.cz/repository/xmlui/handle/11372/LRT-2132. All data is provided by the EU project QT21 (http://www.qt21.eu/).
Human post-edited test sentences for the WMT 2017 Automatic post-editing task. This consists in 2,000 German sentences belonging to the IT domain and already tokenized. Source and target segments can be downloaded from: https://lindat.mff.cuni.cz/repository/xmlui/handle/11372/LRT-2133. All data is provided by the EU project QT21 (http://www.qt21.eu/).
Data
----
Hindi Visual Genome 1.0, a multimodal dataset consisting of text and images suitable for English-to-Hindi multimodal machine translation task and multimodal research. We have selected short English segments (captions) from Visual Genome along with associated images and automatically translated them to Hindi with manual post-editing, taking the associated images into account. The training set contains 29K segments. Further 1K and 1.6K segments are provided in a development and test sets, respectively, which follow the same (random) sampling from the original Hindi Visual Genome.
Additionally, a challenge test set of 1400 segments will be released for the WAT2019 multi-modal task. This challenge test set was created by searching for (particularly) ambiguous English words based on the embedding similarity and manually selecting those where the image helps to resolve the ambiguity.
Dataset Formats
--------------
The multimodal dataset contains both text and images.
The text parts of the dataset (train and test sets) are in simple tab-delimited plain text files.
All the text files have seven columns as follows:
Column1 - image_id
Column2 - X
Column3 - Y
Column4 - Width
Column5 - Height
Column6 - English Text
Column7 - Hindi Text
The image part contains the full images with the corresponding image_id as the file name. The X, Y, Width and Height columns indicate the rectangular region in the image described by the caption.
Data Statistics
----------------
The statistics of the current release is given below.
Parallel Corpus Statistics
---------------------------
Dataset Segments English Words Hindi Words
------- --------- ---------------- -------------
Train 28932 143178 136722
Dev 998 4922 4695
Test 1595 7852 7535
Challenge Test 1400 8185 8665 (Released separately)
------- --------- ---------------- -------------
Total 32925 164137 157617
The word counts are approximate, prior to tokenization.
Citation
--------
If you use this corpus, please cite the following paper:
@article{hindi-visual-genome:2019,
title={{Hindi Visual Genome: A Dataset for Multimodal English-to-Hindi Machine Translation}},
author={Parida, Shantipriya and Bojar, Ond{\v{r}}ej and Dash, Satya Ranjan},
journal={Computaci{\'o}n y Sistemas},
note={In print. Presented at CICLing 2019, La Rochelle, France},
year={2019},
}
This package contains data used in the IWPT 2020 shared task. It contains training, development and test (evaluation) datasets. The data is based on a subset of Universal Dependencies release 2.5 (http://hdl.handle.net/11234/1-3105) but some treebanks contain additional enhanced annotations. Moreover, not all of these additions became part of Universal Dependencies release 2.6 (http://hdl.handle.net/11234/1-3226), which makes the shared task data unique and worth a separate release to enable later comparison with new parsing algorithms. The package also contains a number of Perl and Python scripts that have been used to process the data during preparation and during the shared task. Finally, the package includes the official primary submission of each team participating in the shared task.
This package contains data used in the IWPT 2021 shared task. It contains training, development and test (evaluation) datasets. The data is based on a subset of Universal Dependencies release 2.7 (http://hdl.handle.net/11234/1-3424) but some treebanks contain additional enhanced annotations. Moreover, not all of these additions became part of Universal Dependencies release 2.8 (http://hdl.handle.net/11234/1-3687), which makes the shared task data unique and worth a separate release to enable later comparison with new parsing algorithms. The package also contains a number of Perl and Python scripts that have been used to process the data during preparation and during the shared task. Finally, the package includes the official primary submission of each team participating in the shared task.
Test data for the WMT 2017 Automatic post-editing task (the same used for the Sentence-level Quality Estimation task). They consist in German-English triplets (source and target) belonging to the pharmacological domain and already tokenized. Test set contains 2,000 pairs. All data is provided by the EU project QT21 (http://www.qt21.eu/).
Test data for the WMT 2017 Automatic post-editing task (the same used for the Sentence-level Quality Estimation task). They consist in 2,000 English-German pairs (source and target) belonging to the IT domain and already tokenized. All data is provided by the EU project QT21 (http://www.qt21.eu/).
Test data for the WMT 2018 Automatic post-editing task. They consist in English-German pairs (source and target) belonging to the information technology domain and already tokenized. Test set contains 1,023 pairs. A neural machine translation system has been used to generate the target segments. All data is provided by the EU project QT21 (http://www.qt21.eu/).
Test data for the WMT 2018 Automatic post-editing task. They consist in English-German pairs (source and target) belonging to the information technology domain and already tokenized. Test set contains 2,000 pairs. A phrase-based machine translation system has been used to generate the target segments. This test set is sampled from the same dataset used for the 2016 and 2017 APE shared task editions. All data is provided by the EU project QT21 (http://www.qt21.eu/).
Training, development and text data (the same used for the Sentence-level Quality Estimation task) consist in English-German triplets (source, target and post-edit) belonging to the IT domain and already tokenized.
Training and development respectively contain 12,000 and 1,000 triplets, while the test set 2,000 instances. All data is provided by the EU project QT21 (http://www.qt21.eu/).