In this paper $LJ$-spaces are introduced and studied. They are a common generalization of Lindelöf spaces and $J$-spaces researched by E. Michael. A space $X$ is called an $LJ$-space if, whenever $\lbrace A,B\rbrace $ is a closed cover of $X$ with $A\cap B$ compact, then $A$ or $B$ is Lindelöf. Semi-strong $LJ$-spaces and strong $LJ$-spaces are also defined and investigated. It is demonstrated that the three spaces are different and have interesting properties and behaviors.