In this paper, we consider the global existence, uniqueness and $L^{\infty }$ estimates of weak solutions to quasilinear parabolic equation of $m$-Laplacian type $u_{t}-\mathop {\rm div}(|\nabla u|^{m-2}\nabla u)=u|u|^{\beta -1}\int _{\Omega } |u|^{\alpha } {\rm d} x$ in $\Omega \times (0,\infty )$ with zero Dirichlet boundary condition in $\partial \Omega $. Further, we obtain the $L^{\infty }$ estimate of the solution $u(t)$ and $\nabla u(t)$ for $t>0$ with the initial data $u_0\in L^q(\Omega )$ $(q>1)$, and the case $\alpha +\beta < m-1$.