The goal of this paper was to test the hypothesis that weather conditions, such as temperature and rainfall, affect egg colouration in the great reed warbler Acrocephalus arundinaceus. We failed to find strong support for this hypothesis; nevertheless, our results indicate that temperature has an effect on some egg colour characteristics. Eggshell brightness (PC1) increased with increasing temperature at laying and eggs were darker in the colder year of the two-year study. On the other hand, UV-blue colouration (PC2) scores were higher in the warmer year. The amount of rainfall, however, had no effect on eggshell colouration. As there is an indication from other studies that weather may have an effect on egg appearance through the food availability, we encourage further testing the environmental hypothesis in other bird species. If this holds for more bird species, this would have important implications for the hypotheses about the adaptive function of bright eggshell colouration.
Warmer temperatures in the past 30 years have significantly influenced the seasonal development of insects throughout Europe. As a result of the outbreaks of black flies that have occurred in southeastern Lithuania since the 1970s it is hypothesized that this increase in black fly activity is due to the change in climate. To test this hypothesis the development of Simulium maculatum Meigen under different conditions was determined. This revealed that the time of hatching of S. maculatum eggs in Lithuania was influenced by winter air temperatures, especially those in March. Pupation in S. maculatum is associated with the increase in air and water temperatures that occur at the end of April and in May. The emergence of S. maculatum black flies occurs most often in May. At a water temperature of 13.2°C (1999), S. maculatum took 42 days to develop and half this time (21 days) when the water temperature was 18.8°C (2005). The number of black flies that emerged each year was determined by air temperature but unaffected by rainfall in June (either per month or per ten-day period). and Rasa Bernotienė, Galina Bartkevičienė.
The aim of this study is to understand the seasonalities of runoff and precipitation and their controls along two transects in Peru and one transect in Austria. The analysis is based on daily precipitation data at 111 and 61 stations in Peru and Austria, respectively, and daily discharge data at 51 and 110 stations. The maximum Pardé coefficient is used to quantify the strength of the seasonalities of monthly precipitation and runoff. Circular statistics are used to quantify the seasonalities of annual maximum daily precipitation and annual maximum daily runoff. The results suggest that much larger spatial variation in seasonality in Peru is because of the large diversity in climate and topography. In the dry Peruvian lowlands of the North, the strength of the monthly runoff seasonality is smaller than that of precipitation due to a relatively short rainy period from January to March, catchment storage and the effect of upstream runoff contributions that are more uniform within the year. In the Peruvian highlands in the South, the strength of the monthly runoff seasonality is greater than that of precipitation, or similar, due to relatively little annual precipitation and rather uniform evaporation within the year. In the Austrian transect, the strength of the runoff seasonality is greater than that of precipitation due to the influence of snowmelt in April to June. The strength of monthly regime of precipitation and runoff controls the concentration of floods and extreme precipitation in Peruvian transects. The regions with strong monthly seasonality of runoff have also extreme events concentrated along the same time of the year and the occurrence of floods is mainly controlled by the seasonality of precipitation. In Austria, the monthly runoff maxima and floods occur in the same season in the Alps. In the lowlands, the flood seasonality is controlled mainly by summer extreme precipitation and its interplay with larger soil moisture.
The analyses of precipitation and runoff data along topographic gradients in Peru and Austria showed that, overall, in Peru the spatial variation in seasonality is much larger than in Austria. This is because of the larger diversity in climate and topography.