Let M be an m-dimensional manifold and A = Dr k/I = R⊕NA a Weil algebra of height r. We prove that any A-covelocity TA x f ∈ TA x M, x ∈ M is determined by its values over arbitrary max{widthA,m} regular and under the first jet projection linearly independent elements of TA x M. Further, we prove the rigidity of the so-called universally reparametrizable Weil algebras. Applying essentially those partial results we give the proof of the general rigidity result TA M ≃ T r M without coordinate computations, which improves and generalizes the partial result obtained in Tomáš (2009) from m > k to all cases of m. We also introduce the space JA(M,N) of A-jets and prove its rigidity in the sense of its coincidence with the classical jet space Jr(M,N)., Jiří Tomáš., and Seznam literatury
Let Ln = K[x1±1,..., xn±1] be a Laurent polynomial algebra over a field K of characteristic zero, Wn:= DerK(Ln) the Lie algebra of K-derivations of the algebra Ln, the so-called Witt Lie algebra, and let Vir be the Virasoro Lie algebra which is a 1-dimensional central extension of the Witt Lie algebra. The Lie algebras Wn and Vir are infinite dimen- sional Lie algebras. We prove that the following isomorphisms of the groups of Lie algebra automorphisms hold: AutLie(Vir) \simeq AutLie(W1) \simeq {±1} \simeq K*, and give a short proof that AutLie(Wn) \simeq AutK-alg(Ln) \simeq GLn(Z) \ltimes K*n., Vladimir V. Bavula., and Obsahuje seznam literatury
Let X be a Stein manifold of complex dimension n\geqslant 2 and \Omega \Subset X be a relatively compact domain with C^{2} smooth boundary in X. Assume that Ω is a weakly q-pseudoconvex domain in X. The purpose of this paper is to establish sufficient conditions for the closed range of \overline \partial on Ω. Moreover, we study the \overline \partial -problem on Ω. Specifically, we use the modified weight function method to study the weighted \overline \partial -problem with exact support in Ω. Our method relies on the L^{2} -estimates by Hörmander (1965) and by Kohn (1973)., Sayed Saber., and Obsahuje seznam literatury
Suppose that A is a real symmetric matrix of order n. Denote by m_{A}(0) the nullity of A. For a nonempty subset α of {1, 2,..., n}, let A(α) be the principal submatrix of A obtained from A by deleting the rows and columns indexed by α. When m_{A(\alpha )}(0) = m_{A}(0)+|α|, we call α a P-set of A. It is known that every P-set of A contains at most \left \lfloor n/2 \right \rfloorelements. The graphs of even order for which one can find a matrix attaining this bound are now completely characterized. However, the odd case turned out to be more difficult to tackle. As a first step to the full characterization of these graphs of odd order, we establish some conditions for such graphs G under which there is a real symmetric matrix A whose graph is G and contains a P-set of size (n − 1)/2., Zhibin Du, Carlos M. da Fonseca., and Obsahuje seznam literatury