Každoroční týdenní soustředění fyzikálního korespondenčního semináře FYKOS se letos konalo na sklonku září na západě republiky v Zelené Lhotě. I tentokrát se tři desítky řešitelů rozhodly strávit celý týden svého času studiem fyziky a matematiky. and Vít Beran.
Let f: X → X be a continuous map with the specification property on a compact metric space X. We introduce the notion of the maximal Birkhoff average oscillation, which is the “worst” divergence point for Birkhoff average. By constructing a kind of dynamical Moran subset, we prove that the set of points having maximal Birkhoff average oscillation is residual if it is not empty. As applications, we present the corresponding results for the Birkhoff averages for continuous functions on a repeller and locally maximal hyperbolic set., Jinjun Li, Min Wu., and Obsahuje seznam literatury
We solve the initial value problem for the diffusion induced by dyadic fractional derivative s in \mathbb{R}^{+}. First we obtain the spectral analysis of the dyadic fractional derivative operator in terms of the Haar system, which unveils a structure for the underlying “heat kernel”. We show that this kernel admits an integrable and decreasing majorant that involves the dyadic distance. This allows us to provide an estimate of the maximal operator of the diffusion by the Hardy-Littlewood dyadic maximal operator. As a consequence we obtain the pointwise convergence to the initial data., Marcelo Actis, Hugo Aimar., and Obsahuje seznam literatury
Given a distribution $T$ on the sphere we define, in analogy to the work of Łojasiewicz, the value of $T$ at a point $\xi$ of the sphere and we show that if $T$ has the value $\tau$ at $\xi$, then the Fourier-Laplace series of $T$ at $\xi$ is Abel-summable to $\tau$., Francisco Javier González Vieli., and Obsahuje bibliografii