We study higher local integrability of a weak solution to the steady Stokes problem. We consider the case of a pressure- and shear-rate-dependent viscosity, i.e., the elliptic part of the Stokes problem is assumed to be nonlinear and it depends on p and on the symmetric part of a gradient of u, namely, it is represented by a stress tensor T (Du, p):= v(p, |D|2)D which satisfies r-growth condition with r \in (1, 2]. In order to get the main result, we use Calderón-Zygmund theory and the method which was presented for example in the paper Caffarelli, Peral (1998)., Václav Mácha., and Obsahuje seznam literatury
The imbalance of an edge e = {u, v} in a graph is defined as i(e) = |d(u)−d(v)|, where d(·) is the vertex degree. The irregularity I(G) of G is then defined as the sum of imbalances over all edges of G. This concept was introduced by Albertson who proved that I(G)\leqslant 4n^{3}/27 (where n = |V(G)|) and obtained stronger bounds for bipartite and triangle-free graphs. Since then a number of additional bounds were given by various authors. In this paper we prove a new upper bound, which improves a bound found by Zhou and Luo in 2008. Our bound involves the Laplacian spectral radius λ., Felix Goldberg., and Obsahuje seznam literatury
Fiedler and Markham (1994) proved {\left( {\frac{{\det \hat H}}{k}} \right)^k} \geqslant \det H, where H = (H_{ij})_{i,j}^{n}_{=1} is a positive semidefinite matrix partitioned into n × n blocks with each block k × k and \hat H = \left( {tr{H_{ij}}} \right)_{i,j = 1}^n. We revisit this inequality mainly using some terminology from quantum information theory. Analogous results are included. For example, under the same condition, we prove \det \left( {{I_n} + \hat H} \right) \geqslant \det {\left( {{I_{nk}} + kH} \right)^{{1 \mathord{\left/ {\vphantom {1 k}} \right. \kern-\nulldelimiterspace} k}}}., Minghua Lin., and Obsahuje seznam literatury
The paper studies applications of C*-algebras in geometric topology. Namely, a covariant functor from the category of mapping tori to a category of AF-algebras is constructed; the functor takes continuous maps between such manifolds to stable homomorphisms between the corresponding AF-algebras. We use this functor to develop an obstruction theory for the torus bundles of dimension 2, 3 and 4. In conclusion, we consider two numerical examples illustrating our main results., Igor Nikolaev., and Obsahuje seznam literatury