We have studied the effect of different light gradient regimes on host-plant selection of the carrot psyllid, Trioza apicalis Förster. In both a strong and a weak light gradient, carrot psyllids preferred a carrot leaf placed in higher light intensity. When the choice was between the host (carrot Daucus carota L.) and a non-host (barley Hordeum vulgare L.) virgin adults settled significantly more often on non-host in higher light intensity than on carrot in lower light intensity. In a weak light gradient, none of the gravid females settled on a non-host. In an experiment without light gradient, gravid females showed a preference for carrot, whereas virgin females settled approximately equally on Norway spruce Picea abies Karst. (winter shelter plant) and carrot. Our results show that virgin and gravid individuals have different host-plant selection behaviour, and that they are sensitive to small differences in light intensity. Both factors can create a source of variation in behavioural assays, and should be taken into consideration in future experiments with this and probably also related species. Our results suggest that carrot psyllids can utilize visual cues (light intensity or wavelength) in host-plant selection, and the role of visual cues should be more thoroughly studied.
Functional differentiation of assimilation activity of sun versus shade foliage was analysed in a Norway spruce monoculture stand (age 15 years). The investigated stand density (leaf area index 8.6) and crown structure led to variation in the photosynthetically active photon flux density (PPFD) within the crowns of the sampled trees. At the saturating PPFD, the maximum rate of CO2 uptake (PNmax) of exposed shoots (E-shoots) was 1.7 times that of the shaded shoots (S-shoots). The apparent quantum yield (α) of E-shoots was 0.9 times that of the S-shoots. A lower ability to use excess energy at high PPFD in photosynthesis was observed in the S-layer. The CO2- and PPFD-saturated rate of CO2 uptake (PNsat) of the E-shoots was 1.12 times and the carboxylation efficiency (τ) 1.6 times that of the S-shoots. The CO2-saturated rate of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO) carboxylation (VCmax) and of actual electron transport (Jamax) in the S-needles amounted to 89 and 95 % of VCmax and Jamax in the E-needles. Thus, in addition to the irradiation conditions and thus limitation by low Ja, the important limitation of photosynthesis in shade needles is due to carboxylation. This limitation of photosynthesis is accompanied by lower stomatal conductance. and M. Šprtová, M. V. Marek.
Twelve-year-old Norway spruce (Picea abies [L.] Karst.) trees were exposed to ambient (AC) or elevated (EC) [ambient + 350 µmol(CO2) mol-1] CO2 concentrations in open-top-chamber (OTC) experiment under the field conditions of a mountain stand. Short-term (4 weeks, beginning of the vegetation season) and long-term (4 growing seasons, end of the vegetation season) effects of this treatment on biochemical parameters of CO2 assimilation were evaluated. A combination of gas exchange, fluorescence of chlorophyll a, and application of a mathematical model of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO) activity was used. The analysis showed that the depression of photosynthetic activity by long-term impact of elevated CO2 was mainly caused by decreased RuBPCO carboxylation rate. The electron transport rate as well as the rate of ribulose-1,5-bisphosphate (RuBP) formation were also modified. These modifications to photosynthetic assimilation depended on time during the growing season. Changes in the spring were caused mainly by local deficiency of nitrogen in the assimilating tissue. However, the strong depression of assimilation observed in the autumn months was the result of insufficient carbon sink capacity. and O. Urban, M. V. Marek.
The earlier developed double-modulation chlorphyll (Chl) fluorometer was modified for measurements with intact leaves of higher plants. The Chl fluorometer is based on a non-periodic modulation of both actinic and measuring flashes. In addition, continuous orange actinic and far-red radiation were produced by separate arrays of light-emitting diodes (LEDs). Programmable timing of the flashes allows to cover a wide dynamic range from microseconds to minutes. We have demonstrated that the LEDs can produce single-turnover flashes that saturate QA reduction of intact leaves of Glyceria maxima and shoots of Picea abies. and O. Urban ... [et al.].