Eyetracked Multi-Modal Translation (EMMT) is a simultaneous eye-tracking, 4-electrode EEG and audio corpus for multi-modal reading and translation scenarios. It contains monocular eye movement recordings, audio data and 4-electrode wearable electroencephalogram (EEG) data of 43 participants while engaged in sight translation supported by an image.
The details about the experiment and the dataset can be found in the README file.
The corpus presented consists of job ads in Spanish related to Engineering positions in Peru.
The documents were preprocessed and annotated for POS tagging, NER, and topic modeling tasks.
The corpus is divided in two components:
- POS tagging/ NER training data: Consisting of 800 job ads, each one tokenized and manually annotated with POS tag information (EAGLE format) and Entity Label in BIO format.
- Topic modeling training data: containing 9000 documents stripped from stopwords. Comes in two formats:
* Whole text documents: containing all the information originally posted in the ad.
* Extracted chunks documents: containing chunks extracted by custom NER models (expected skills, tasks to perform, and preferred major), as described in Improving Topic Coherence Using Entity Extraction Denoising (to appear)
This corpora is part of Deliverable 5.5 of the European Commission project QTLeap FP7-ICT-2013.4.1-610516 (http://qtleap.eu).
The texts are sentences from the Europarl parallel corpus (Koehn, 2005). We selected the monolingual sentences from parallel corpora for the following pairs: Bulgarian-English, Czech-English, Portuguese-English and Spanish-English. The English corpus is comprised by the English side of the Spanish-English corpus.
Basque is not in Europarl. In addition, it contains the Basque and English sides of the GNOME corpus.
The texts have been automatically annotated with NLP tools, including Word Sense Disambiguation, Named Entity Disambiguation and Coreference resolution. Please check deliverable D5.6 in http://qtleap.eu/deliverables for more information.
FASpell dataset was developed for the evaluation of spell checking algorithms. It contains a set of pairs of misspelled Persian words and their corresponding corrected forms similar to the ASpell dataset used for English.
The dataset consists of two parts:
a) faspell_main: list of 5050 pairs collected from errors made by elementary school pupils and professional typists.
b) faspell_ocr: list of 800 pairs collected from the output of a Farsi OCR system.
Annotated dataset consisting of personal designations found on websites of 42 German, Austrian, Swiss and South Tyrolean cities. Our goal is to re-evaluate the websites every year in order to see how the use of gender-fair language develops over time. The dataset contains coordinates for the creation of map material.
The contribution includes the data frame and the R script (Markdown file) belonging to the paper "Who Benefits from an Imperative? Assessment of Directives on a Benefit-Scale" submitted to the journal Pragmatics on September 2024.
We present a large corpus of Czech parliament plenary sessions. The corpus
consists of approximately 444 hours of speech data and corresponding text
transcriptions. The whole corpus has been segmented to short audio snippets
making it suitable for both training and evaluation of automatic speech
recognition (ASR) systems. The source language of the corpus is Czech, which
makes it a valuable resource for future research as only a few public datasets
are available for the Czech language.
LiFR-Law is a corpus of Czech legal and administrative texts with measured reading comprehension and a subjective expert annotation of diverse textual properties based on the Hamburg Comprehensibility Concept (Langer, Schulz von Thun, Tausch, 1974). It has been built as a pilot data set to explore the Linguistic Factors of Readability (hence the LiFR acronym) in Czech administrative and legal texts, modeling their correlation with actually observed reading comprehension. The corpus is comprised of 18 documents in total; that is, six different texts from the legal/administration domain, each in three versions: the original and two paraphrases. Each such document triple shares one reading-comprehension test administered to at least thirty readers of random gender, educational background, and age. The data set also captures basic demographic information about each reader, their familiarity with the topic, and their subjective assessment of the stylistic properties of the given document, roughly corresponding to the key text properties identified by the Hamburg Comprehensibility Concept.
LiFR-Law is a corpus of Czech legal and administrative texts with measured reading comprehension and a subjective expert annotation of diverse textual properties based on the Hamburg Comprehensibility Concept (Langer, Schulz von Thun, Tausch, 1974). It has been built as a pilot data set to explore the Linguistic Factors of Readability (hence the LiFR acronym) in Czech administrative and legal texts, modeling their correlation with actually observed reading comprehension. The corpus is comprised of 18 documents in total; that is, six different texts from the legal/administration domain, each in three versions: the original and two paraphrases. Each such document triple shares one reading-comprehension test administered to at least thirty readers of random gender, educational background, and age. The data set also captures basic demographic information about each reader, their familiarity with the topic, and their subjective assessment of the stylistic properties of the given document, roughly corresponding to the key text properties identified by the Hamburg Comprehensibility Concept.
Changes to the previous version and helpful comments
• File names of the comprehension test results (self-explanatory)
• Corrected one erroneous automatic evaluation rule in the multiple-choice evaluation (zahradnici_3,
TRUE and FALSE had been swapped)
• Evaluation protocols for both question types added into Folder lifr_formr_study_design
• Data has been cleaned: empty responses to multiple-choice questions were re-inserted. Now, all surveys
are considered complete that have reader’s subjective text evaluation complete (these were placed at
the very end of each survey).
• Only complete surveys (all 7 content questions answered) are represented. We dropped the replies of
six users who did not complete their surveys.
• A few missing responses to open questions have been detected and re-inserted.
• The demographic data contain all respondents who filled in the informed consent and the demographic
details, with respondents who did not complete any test survey (but provided their demographic
details) in a separate file. All other data have been cleaned to contain only responses by the regular
respondents (at least one completed survey).
Corpus of Czech educational texts for readability studies, with paraphrases, measured reading comprehension, and a multi-annotator subjective rating of selected text features based on the Hamburg Comprehensibility Concept