The `corpipe24-corefud1.2-240906` is a `mT5-large`-based multilingual model for coreference resolution usable in CorPipe 24 (https://github.com/ufal/crac2024-corpipe). It is released under the CC BY-NC-SA 4.0 license.
The model is language agnostic (no corpus id on input), so it can be in theory used to predict coreference in any `mT5` language.
This model jointly predicts also the empty nodes needed for zero coreference. The paper introducing this model also presents an alternative two-stage approach first predicting empty nodes (via https://www.kaggle.com/models/ufal-mff/crac2024_zero_nodes_baseline/) and then performing coreference resolution (via http://hdl.handle.net/11234/1-5673), which is circa twice as slow but slightly better.
140 million words; Corpus of the Contemporary Lithuanian Language which comprises 160 million words is a collection of texts designed to represent current Lithuanian. The corpus is compiled from printed material during Lithuania's independence period (since 1990). The corpus is designed to represent as wide a range of contemporary written Lithuanian as possible. The largest part of the corpus is comprised of General Press (texts from regional and national newspapers), Popular Press, and Special Press (specialized newspapers and magazines). These texts have been intended for general readers, as well as specialists. The rest of the corpus consists of Fiction, Memoirs, other literature (scientific and popular), and various official texts. The larger part of the corpus is freely accessible for online search at http://donelaitis.vdu.lt.
We present DaMuEL, a large Multilingual Dataset for Entity Linking containing data in 53 languages. DaMuEL consists of two components: a knowledge base that contains language-agnostic information about entities, including their claims from Wikidata and named entity types (PER, ORG, LOC, EVENT, BRAND, WORK_OF_ART, MANUFACTURED); and Wikipedia texts with entity mentions linked to the knowledge base, along with language-specific text from Wikidata such as labels, aliases, and descriptions, stored separately for each language. The Wikidata QID is used as a persistent, language-agnostic identifier, enabling the combination of the knowledge base with language-specific texts and information for each entity. Wikipedia documents deliberately annotate only a single mention for every entity present; we further automatically detect all mentions of named entities linked from each document. The dataset contains 27.9M named entities in the knowledge base and 12.3G tokens from Wikipedia texts. The dataset is published under the CC BY-SA licence.
Deep Universal Dependencies is a collection of treebanks derived semi-automatically from Universal Dependencies (http://hdl.handle.net/11234/1-2988). It contains additional deep-syntactic and semantic annotations. Version of Deep UD corresponds to the version of UD it is based on. Note however that some UD treebanks have been omitted from Deep UD.
Deep Universal Dependencies is a collection of treebanks derived semi-automatically from Universal Dependencies (http://hdl.handle.net/11234/1-3105). It contains additional deep-syntactic and semantic annotations. Version of Deep UD corresponds to the version of UD it is based on. Note however that some UD treebanks have been omitted from Deep UD.
Deep Universal Dependencies is a collection of treebanks derived semi-automatically from Universal Dependencies (http://hdl.handle.net/11234/1-3226). It contains additional deep-syntactic and semantic annotations. Version of Deep UD corresponds to the version of UD it is based on. Note however that some UD treebanks have been omitted from Deep UD.
Deep Universal Dependencies is a collection of treebanks derived semi-automatically from Universal Dependencies (http://hdl.handle.net/11234/1-3424). It contains additional deep-syntactic and semantic annotations. Version of Deep UD corresponds to the version of UD it is based on. Note however that some UD treebanks have been omitted from Deep UD.
Deep Universal Dependencies is a collection of treebanks derived semi-automatically from Universal Dependencies (http://hdl.handle.net/11234/1-3687). It contains additional deep-syntactic and semantic annotations. Version of Deep UD corresponds to the version of UD it is based on. Note however that some UD treebanks have been omitted from Deep UD.
Texts in 107 languages from the W2C corpus (http://hdl.handle.net/11858/00-097C-0000-0022-6133-9), first 1,000,000 tokens per language, tagged by the delexicalized tagger described in Yu et al. (2016, LREC, Portorož, Slovenia).
Texts in 107 languages from the W2C corpus (http://hdl.handle.net/11858/00-097C-0000-0022-6133-9), first 1,000,000 tokens per language, tagged by the delexicalized tagger described in Yu et al. (2016, LREC, Portorož, Slovenia).
Changes in version 1.1:
1. Universal Dependencies tagset instead of the older and smaller Google Universal POS tagset.
2. SVM classifier trained on Universal Dependencies 1.2 instead of HamleDT 2.0.
3. Balto-Slavic languages, Germanic languages and Romance languages were tagged by classifier trained only on the respective group of languages. Other languages were tagged by a classifier trained on all available languages. The "c7" combination from version 1.0 is no longer used.