Probabilistic mixtures provide flexible "universal'' approximation of probability density functions. Their wide use is enabled by the availability of a range of efficient estimation algorithms. Among them, quasi-Bayesian estimation plays a prominent role as it runs "naturally'' in one-pass mode. This is important in on-line applications and/or extensive databases. It even copes with dynamic nature of components forming the mixture. However, the quasi-Bayesian estimation relies on mixing via constant component weights. Thus, mixtures with dynamic components and dynamic transitions between them are not supported. The present paper fills this gap. For the sake of simplicity and to give a better insight into the task, the paper considers mixtures with known components. A general case with unknown components will be presented soon.
This text describes a method of estimating the hazard rate of survival data following monotone Aalen regression model. The proposed approach is based on techniques which were introduced by Arjas and Gasbarra \cite{gasbarra}. The unknown functional parameters are assumed to be a priori piecewise constant on intervals of varying count and size. The estimates are obtained with the aid of the Gibbs sampler and its variants. The performance of the method is explored by simulations. The results indicate that the method is applicable on small sample size datasets.
This article deals with the objective Bayesian analysis of random censorship model with informative censoring using Weibull distribution. The objective Bayesian analysis has a long history from Bayes and Laplace through Jeffreys and is reaching the level of sophistication gradually. The reference prior method of Bernardo is a nice attempt in this direction. The reference prior method is based on the Kullback-Leibler divergence between the prior and the corresponding posterior distribution and easy to implement when the information matrix exists in closed-form. We apply this method to Weibull random censorship model and compare it with Jeffreys and maximum likelihood methods. It is observed that the closed-form expressions for the Bayes estimators are not possible; we use importance sampling technique to obtain the approximate Bayes estimates. The behaviour of maximum likelihood and Bayes estimators is observed via extensive numerical simulation. The proposed methodology is used for the analysis of a real-life data for illustration and appropriateness of the model is tested by Henze goodness-of-fit test.