Corpus contains recordings of communication between air traffic controllers and pilots. The speech is manually transcribed and labeled with the information about the speaker (pilot/controller, not the full identity of the person). The corpus is currently small (20 hours) but we plan to search for additional data next year. The audio data format is: 8kHz, 16bit PCM, mono. and Technology Agency of the Czech Republic, project No. TA01030476.
Data
-------
Bengali Visual Genome (BVG for short) 1.0 has similar goals as Hindi Visual Genome (HVG) 1.1: to support the Bengali language. Bengali Visual Genome 1.0 is the multi-modal dataset in Bengali for machine translation and image
captioning. Bengali Visual Genome is a multimodal dataset consisting of text and images suitable for English-to-Bengali multimodal machine translation tasks and multimodal research. We follow the same selection of short English segments (captions) and the associated images from Visual Genome as HGV 1.1 has. For BVG, we manually translated these captions from English to Bengali taking the associated images into account. The manual translation is performed by the native Bengali speakers without referring to any machine translation system.
The training set contains 29K segments. Further 1K and 1.6K segments are provided in development and test sets, respectively, which follow the same (random) sampling from the original Hindi Visual Genome. A third test set is
called the ``challenge test set'' and consists of 1.4K segments. The challenge test set was created for the WAT2019 multi-modal task by searching for (particularly) ambiguous English words based on the embedding similarity and
manually selecting those where the image helps to resolve the ambiguity. The surrounding words in the sentence however also often include sufficient cues to identify the correct meaning of the ambiguous word.
Dataset Formats
---------------
The multimodal dataset contains both text and images.
The text parts of the dataset (train and test sets) are in simple tab-delimited plain text files.
All the text files have seven columns as follows:
Column1 - image_id
Column2 - X
Column3 - Y
Column4 - Width
Column5 - Height
Column6 - English Text
Column7 - Bengali Text
The image part contains the full images with the corresponding image_id as the file name. The X, Y, Width and Height columns indicate the rectangular region in the image described by the caption.
Data Statistics
---------------
The statistics of the current release are given below.
Parallel Corpus Statistics
--------------------------
Dataset Segments English Words Bengali Words
---------- -------- ------------- -------------
Train 28930 143115 113978
Dev 998 4922 3936
Test 1595 7853 6408
Challenge Test 1400 8186 6657
---------- -------- ------------- -------------
Total 32923 164076 130979
The word counts are approximate, prior to tokenization.
Citation
--------
If you use this corpus, please cite the following paper:
@inproceedings{hindi-visual-genome:2022,
title= "{Bengali Visual Genome: A Multimodal Dataset for Machine Translation and Image Captioning}",
author={Sen, Arghyadeep
and Parida, Shantipriya
and Kotwal, Ketan
and Panda, Subhadarshi
and Bojar, Ond{\v{r}}ej
and Dash, Satya Ranjan},
editor={Satapathy, Suresh Chandra
and Peer, Peter
and Tang, Jinshan
and Bhateja, Vikrant
and Ghosh, Anumoy},
booktitle= {Intelligent Data Engineering and Analytics},
publisher= {Springer Nature Singapore},
address= {Singapore},
pages = {63--70},
isbn = {978-981-16-6624-7},
doi = {10.1007/978-981-16-6624-7_7},
}
A large web corpus (over 10 billion tokens) licensed under CreativeCommons license family in 50+ languages that has been extracted from CommonCrawl, the largest publicly available general Web crawl to date with about 2 billion crawled URLs.
CoDipA UNSC 1.0, or a Corpus of Diplomatic Attitudes of the United Nations Security Council is a language resource manually annotated with the attitude-part of Appraisal theory. The speeches were selected according to topic-related
and temporal criteria, and are representative of 5 major international military conflicts that have occurred between 1995 and 2020. The texts were annotated according to the predefined annotation scenario, which is based on the original Appraisal theory and later available commentaries on specificity of its implementation.
The annotated texts are available in JSON Lines format. The corpus also contains double annotations of the 8 selected speeches.
The `corpipe23-corefud1.1-231206` is a `mT5-large`-based multilingual model for coreference resolution usable in CorPipe 23 (https://github.com/ufal/crac2023-corpipe). It is released under the CC BY-NC-SA 4.0 license.
The model is language agnostic (no _corpus id_ on input), so it can be used to predict coreference in any `mT5` language (for zero-shot evaluation, see the paper). However, note that the empty nodes must be present already on input, they are not predicted (the same settings as in the CRAC23 shared task).
The `corpipe23-corefud1.2-240906` is a `mT5-large`-based multilingual model for coreference resolution usable in CorPipe 23 <https://github.com/ufal/crac2023-corpipe>. It is released under the CC BY-NC-SA 4.0 license.
The model is language agnostic (no corpus id on input), so it can be in theory used to predict coreference in any `mT5` language. However, the model expects empty nodes to be already present on input, predicted by the https://www.kaggle.com/models/ufal-mff/crac2024_zero_nodes_baseline/.
This model was present in the CorPipe 24 paper as an alternative to a single-stage approach, where the empty nodes are predicted joinly with coreference resolution (via http://hdl.handle.net/11234/1-5672), an approach circa twice as fast but of slightly worse quality.
The `corpipe24-corefud1.2-240906` is a `mT5-large`-based multilingual model for coreference resolution usable in CorPipe 24 (https://github.com/ufal/crac2024-corpipe). It is released under the CC BY-NC-SA 4.0 license.
The model is language agnostic (no corpus id on input), so it can be in theory used to predict coreference in any `mT5` language.
This model jointly predicts also the empty nodes needed for zero coreference. The paper introducing this model also presents an alternative two-stage approach first predicting empty nodes (via https://www.kaggle.com/models/ufal-mff/crac2024_zero_nodes_baseline/) and then performing coreference resolution (via http://hdl.handle.net/11234/1-5673), which is circa twice as slow but slightly better.
CsEnVi Pairwise Parallel Corpora consist of Vietnamese-Czech parallel corpus and Vietnamese-English parallel corpus. The corpora were assembled from the following sources:
- OPUS, the open parallel corpus is a growing multilingual corpus of translated open source documents.
The majority of Vi-En and Vi-Cs bitexts are subtitles from movies and television series.
The nature of the bitexts are paraphrasing of each other's meaning, rather than translations.
- TED talks, a collection of short talks on various topics, given primarily in English, transcribed and with transcripts translated to other languages. In our corpus, we use 1198 talks which had English and Vietnamese transcripts available and 784 talks which had Czech and Vietnamese transcripts available in January 2015.
The size of the original corpora collected from OPUS and TED talks is as follows:
CS/VI EN/VI
Sentence 1337199/1337199 2035624/2035624
Word 9128897/12073975 16638364/17565580
Unique word 224416/68237 91905/78333
We improve the quality of the corpora in two steps: normalizing and filtering.
In the normalizing step, the corpora are cleaned based on the general format of subtitles and transcripts. For instance, sequences of dots indicate explicit continuation of subtitles across multiple time frames. The sequences of dots are distributed differently in the source and the target side. Removing the sequence of dots, along with a number of other normalization rules, improves the quality of the alignment significantly.
In the filtering step, we adapt the CzEng filtering tool [1] to filter out bad sentence pairs.
The size of cleaned corpora as published is as follows:
CS/VI EN/VI
Sentence 1091058/1091058 1113177/1091058
Word 6718184/7646701 8518711/8140876
Unique word 195446/59737 69513/58286
The corpora are used as training data in [2].
References:
[1] Ondřej Bojar, Zdeněk Žabokrtský, et al. 2012. The Joy of Parallelism with CzEng 1.0. Proceedings of LREC2012. ELRA. Istanbul, Turkey.
[2] Duc Tam Hoang and Ondřej Bojar, The Prague Bulletin of Mathematical Linguistics. Volume 104, Issue 1, Pages 75–86, ISSN 1804-0462. 9/2015
CUBBITT En-Cs translation models, exported via TensorFlow Serving, available in the Lindat translation service (https://lindat.mff.cuni.cz/services/translation/).
Models are compatible with Tensor2tensor version 1.6.6.
For details about the model training (data, model hyper-parameters), please contact the archive maintainer.
Evaluation on newstest2014 (BLEU):
en->cs: 27.6
cs->en: 34.4
(Evaluated using multeval: https://github.com/jhclark/multeval)
CUBBITT En-Fr translation models, exported via TensorFlow Serving, available in the Lindat translation service (https://lindat.mff.cuni.cz/services/translation/).
Models are compatible with Tensor2tensor version 1.6.6.
For details about the model training (data, model hyper-parameters), please contact the archive maintainer.
Evaluation on newstest2014 (BLEU):
en->fr: 38.2
fr->en: 36.7
(Evaluated using multeval: https://github.com/jhclark/multeval)