A large web corpus (over 10 billion tokens) licensed under CreativeCommons license family in 50+ languages that has been extracted from CommonCrawl, the largest publicly available general Web crawl to date with about 2 billion crawled URLs.
The `corpipe23-corefud1.1-231206` is a `mT5-large`-based multilingual model for coreference resolution usable in CorPipe 23 (https://github.com/ufal/crac2023-corpipe). It is released under the CC BY-NC-SA 4.0 license.
The model is language agnostic (no _corpus id_ on input), so it can be used to predict coreference in any `mT5` language (for zero-shot evaluation, see the paper). However, note that the empty nodes must be present already on input, they are not predicted (the same settings as in the CRAC23 shared task).
The `corpipe23-corefud1.2-240906` is a `mT5-large`-based multilingual model for coreference resolution usable in CorPipe 23 <https://github.com/ufal/crac2023-corpipe>. It is released under the CC BY-NC-SA 4.0 license.
The model is language agnostic (no corpus id on input), so it can be in theory used to predict coreference in any `mT5` language. However, the model expects empty nodes to be already present on input, predicted by the https://www.kaggle.com/models/ufal-mff/crac2024_zero_nodes_baseline/.
This model was present in the CorPipe 24 paper as an alternative to a single-stage approach, where the empty nodes are predicted joinly with coreference resolution (via http://hdl.handle.net/11234/1-5672), an approach circa twice as fast but of slightly worse quality.
The `corpipe24-corefud1.2-240906` is a `mT5-large`-based multilingual model for coreference resolution usable in CorPipe 24 (https://github.com/ufal/crac2024-corpipe). It is released under the CC BY-NC-SA 4.0 license.
The model is language agnostic (no corpus id on input), so it can be in theory used to predict coreference in any `mT5` language.
This model jointly predicts also the empty nodes needed for zero coreference. The paper introducing this model also presents an alternative two-stage approach first predicting empty nodes (via https://www.kaggle.com/models/ufal-mff/crac2024_zero_nodes_baseline/) and then performing coreference resolution (via http://hdl.handle.net/11234/1-5673), which is circa twice as slow but slightly better.
En-Ru translation models, exported via TensorFlow Serving, available in the Lindat translation service (https://lindat.mff.cuni.cz/services/translation/).
The models were trained using the MCSQ social surveys dataset (available at https://repo.clarino.uib.no/xmlui/bitstream/handle/11509/142/mcsq_v3.zip).
Their main use should be in-domain translation of social surveys.
Models are compatible with Tensor2tensor version 1.6.6.
For details about the model training (data, model hyper-parameters), please contact the archive maintainer.
Evaluation on MCSQ test set (BLEU):
en->ru: 64.3 (train: genuine in-domain MCSQ data)
ru->en: 74.7 (train: additional backtranslated in-domain MCSQ data)
(Evaluated using multeval: https://github.com/jhclark/multeval)
The NottDeuYTSch corpus contains over 33 million words taken from approximately 3 million YouTube comments from videos published between 2008 to 2018 targeted at a young, German-speaking demographic and represents an authentic language snapshot of young German speakers. The corpus was proportionally sampled based on video category and year from a database of 112 popular German-speaking YouTube channels in the DACH region for optimal representativeness and balance and contains a considerable amount of associated metadata for each comment that enable further longitudinal cross-sectional analyses.
A test set that contains manually annotated sentences with gapping.
The test set was compiled from SynTagRus (v. 2015) the dependency treebank for Russian that provides comprehensive manually-corrected morphological and syntactic annotation.
En-Ru translation models, exported via TensorFlow Serving, available in the Lindat translation service (https://lindat.mff.cuni.cz/services/translation/).
Models are compatible with Tensor2tensor version 1.6.6.
For details about the model training (data, model hyper-parameters), please contact the archive maintainer.
Evaluation on newstest2020 (BLEU):
en->ru: 18.0
ru->en: 30.4
(Evaluated using multeval: https://github.com/jhclark/multeval)
Tokenizer, POS Tagger, Lemmatizer and Parser models for 123 treebanks of 69 languages of Universal Depenencies 2.10 Treebanks, created solely using UD 2.10 data (https://hdl.handle.net/11234/1-4758). The model documentation including performance can be found at https://ufal.mff.cuni.cz/udpipe/2/models#universal_dependencies_210_models .
To use these models, you need UDPipe version 2.0, which you can download from https://ufal.mff.cuni.cz/udpipe/2 .
Tokenizer, POS Tagger, Lemmatizer and Parser models for 131 treebanks of 72 languages of Universal Depenencies 2.12 Treebanks, created solely using UD 2.12 data (https://hdl.handle.net/11234/1-5150). The model documentation including performance can be found at https://ufal.mff.cuni.cz/udpipe/2/models#universal_dependencies_212_models .
To use these models, you need UDPipe version 2.0, which you can download from https://ufal.mff.cuni.cz/udpipe/2 .