It became evident in the present study that carbon tetrachloride (CCl4), in addition to its known liver and renal toxicity, causes serious damage to endothelial cells. The preventive effect of red wine on cardiovascular diseases has been documented in a number of human population studies as well as in animal experimental models. In this study, the endothelium protective effect of polyphenolic compounds isolated from red wine was studied in rats administered 0.5 ml of CCl4/kg body weight intraperitoneally twice a week for 8 weeks. Endothelemia (endothelial cells/10 μl of plasma) was used as the marker of endothelial cell injury in vivo. Chronic CCl4 treatment for 8 weeks lead to a 3-fold increase of free endothelial cells circulating in the blood when compared to the baseline values (2.5±0.3). Parallel oral administration of polyphenols 40 mg/kg/day significantly decreased the endothelemia. Polyphenolic compounds alone did not produce significant changes. Three weeks of spontaneous recovery after the 8-week treatment with CCl4 did not lead to a marked decrease of endothelemia, but the administration of red wine polyphenols during the 3-week period significantly decreased free endothelial cells in the blood. It can be concluded that long-term administration of CCl4 may serve as a useful experimental model of endothelial damage. The red wine polyphenolic compounds exert a powerful protective effect on endothelial cells from the injury caused by CCl4. This effect was documented by decreased endothelemia that corresponded to diminished endothelial cell swelling and detachment evaluated by histology of the vascular intima. The endothelium protective effect may be one of the key factors that contribute to the preventive action of red wine on cardiovascular diseases.
The responsiveness of isolated high-pressure (aorta, renal artery) and low-pressure vessels (pulmonary artery) was compared during systemic hypertension induced by chronic inhibition of nitric oxide synthesis by NG-nitro-L-arginine methyl ester (L-NAME) in rats. L-NAME (40 mg/kg/day) was given to animals in their drinking water. After 4 weeks of L-NAME treatment, systolic blood pressure increased by 37 % as compared with that in the control group. Chronic L-NAME treatment resulted in significant reduction of endothelium-dependent relaxation to acetylcholine (10-8 to 3xl0-6 mol/1) in both types of vessels. The reduced relaxation was not influenced by acute pretreatment with indomethacin (10"5 mol/1), however, it was further reduced by acute pretreatment with additional L-NAME (10-4 mol/1). L-arginine (10-4 mol/1) improved the reduced relaxation. Endothelium- independent relaxation to sodium nitroprusside (10-9 to 10-6 mol/1) was unaffected by L-NAME treatment. /3-adrenoceptor-mediated relaxation to isoprénaline (10“8 to 3xl0-6 mol/1) was also not influenced by chronic L-NAME treatment Similar alterations in the responsiveness of high- and low- pressure vessels indicate rather the decisive role of nitric oxide restriction than that of elevated blood pressure in their development