Rychle postupující miniaturizace v elektronice vyžaduje nové přístupy, a to nejen v technologii umožňující vytvářet nanometrové a subnanometrové objekty, ale též v jejich charakterizaci. EMCD - elektronový magnetický cirkulární dichroismus, je nová metoda, která používá transmisního elektronového mikroskopu k určení magnetických momentů atomů, ze kterých zkoumaný objekt sestává. V současné době je rozlišení EMCD lepší než 10 nm s potenciálem subnanometrového rozlišení. Metoda dovoluje oddělit spinový a orbitální příspěvek k magnetickému momentu., Ján Rusz, Pavel Novák., Úvod a závěr, vč. abstrakt, je v češtině, and Obsahuje seznam literatury
Foliage of Scots pine (Pinus sylvestris L.) and pedunculate oak (Quercus robur L.) was collected in a mixed pine/oak forest at canopy positions differing in radiation environment. In both species, chlorophyll (Chl) a/b ratios were higher in foliage of canopy positions exposed to higher irradiance as compared to more shaded crown layers. Throughout the growing season, pine needles exhibited significantly lower Chl a/b ratios than oak leaves acclimated to a similar photon availability. Hence, pine needles showed shade-type pigment characteristics relative to foliage of oak. At a given radiation environment, pine needles tended to contain more neoxanthin and lutein per unit of Chl than oak leaves. The differences in pigment composition between foliage of pine and oak can be explained by a higher ratio of outer antennae Chl to core complex Chl in needles of P. sylvestris which enhances the efficiency of photon capture under limiting irradiance. The shade-type pigment composition of pine relative to oak foliage could have been due to a reduced mesophyll internal photon exposure of chloroplasts in needles of Scots pine, resulting from their xeromorphic anatomy. Hence, the higher drought tolerance of pine needles could be achieved at the expense of shade tolerance. and U. Hansen, J. Schneiderheinze, B. Rank.
Each of the Diophantine equations $A^4 \pm nB^3 = C^2$ has an infinite number of integral solutions $(A, B, C)$ for any positive integer $n$. In this paper, we will show how the method of infinite ascent could be applied to generate these solutions. We will investigate the conditions when $A$, $B$ and $C$ are pair-wise co-prime. As a side result of this investigation, we will show a method of generating an infinite number of co-prime integral solutions $(A, B, C)$ of the Diophantine equation $aA^3 + cB^3 = C^2$ for any co-prime integer pair $(a,c)$.