Excitation kinetics based on feedback regulation of chlorophyll (Chl) fluorescence of leaves measured with the chlorophyll fluorometer, FluoroMeter Modul (FMM), are presented. These kinetics showed the variation of excitation light (laser power, LP) regulated by the feedback mechanism of the FMM, an intelligent Chl fluorometer with embedded computer, which maintains the fluorescence response constant during the 300-s transient between the dark- and light-adapted state of photosynthesis. The excitation kinetics exhibited a rise of LP with different time constants and fluctuations leading to a type of steady state. The variation of excitation kinetics were demonstrated using the example of primary leaves of etiolated barley seedlings (Hordeum vulgare L. cv. Barke) during 48 h of greening in the light with gradual accumulation of Chl and development of photosynthetic activity. The excitation kinetics showed a fast rise followed by a short plateau at ca. 30 s and finally a slow constant increase up to 300 s. Only in the case of 2 h of greening in the light, the curve reached a stable steady state after 75 s followed by a slight decline. The final LP value (at 300 s of illumination) increased up to 12 h of greening and decreased with longer greening times. The active feedback mechanism of the FMM adjusted the excitation light during the measurement to the actual photosynthetic capacity of the individual leaf sample. In this way, the illumination with excessive light was avoided. The novel excitation kinetics can be used to characterize health, stress, disease, and/or product quality of plant material., C. Buschmann ... [et al.]., and Obsahuje bibliografii
The ratío between carotenoid and chlorophyll a concentrations (Car/Chla) is indicative of the physiology and phenology of plants. With the aim of assessing this Car/Chla pigment ratio from reflectance (R), a wide range of leaves from several species and conditions were measured with high spectral resolution spectroradiometers for X between 400 and 800 nm. The performances of three pigment reflectance indices; (7) simple ratio pigment index (SRPI = R^*/R^2), (2) normalized difference pigment index [NDPI = (R^’ - R^^y^^RXi + R^2)]^ g^d (i) the structure insensitive pigment index [SIPI = (R**^ - R^i)/(R®*^ - R^^)] were tested. For each pigment index, every set of wavebands [Aj, X'^ was systematically tested. High correlations with Car/Chla were found for all these pigment indices in the blue-red domain [400 nm<A,i<530 nm, 600 nm<A,2<700 nm] as expected since both Chl and Car absorb in the blue, while only Chl absorbs in the red. The best semi-empirical estimation of the Car/Chla ratio was provided by SIPI for the wavelengths 445 and 680 nm: Car/Chla = 4.44 - 6.77 exp[-0.48 (R^oo. r445)/(r800 . R680)j| This index minimizes the confounding effects of leaf surface and mesophyll structure. These reflectance pigment indices provide new insight in the use of remote sensing for the assessment of physiology and phenology of vegetation.