1 - 3 of 3
Number of results to display per page
Search Results
2. Source-to-sink relationship between green leaves and green pseudobulbs of C3 orchid in regulation of photosynthesis
- Creator:
- He, J., Tan, B. H. G., and Qin, L.
- Format:
- bez média and svazek
- Type:
- model:article and TEXT
- Subject:
- botanika, botany, carbohydrate, Chl fluorescence, green pseudobulbs, orchid, and photosynthetic O2 evolution
- Language:
- Multiple languages
- Description:
- In this paper, photosynthetic characteristics of green leaves (GL) and green pseudobulbs (GPSB) of C3 orchid Oncidium Golden Wish were first studied. Light saturation for photosynthesis and maximum photosynthetic rates (Pmax) were significantly higher in GL than in GPSB. The results of the optimal PSII quantum yield (Fv/Fm ratio), electron transport rate (ETR), the effective photochemical quantum yield (ΔF/Fm') and nonphotochemical quenching (NPQ) of Chl fluorescence revealed that GPSB had lower light utilization than that of GL. Significantly higher photosynthetic pigments were found in GL than in GPSB. Alteration of source/sink ratio had no impact on all photosynthetic parameters for both GL and GPSB after a short term of 3 days or even a long term of 2 weeks of treatments although there were significant decreases in GL carbohydrate concentration of GL-darkened plants by the end of the day. However, decreases of all photosynthetic parameters of GL were observed in GL-darkened plants after 4 weeks of treatment compared to those of fully illuminated (FI) and GPSB-darkened plants. These results indicate that the level of carbohydrates in GL plays an important role in regulating their photosynthesis. Due to their lower photosynthetic capacities, GPSB function mainly as sinks. Darkening GPSB up to 2 weeks did not affect their own Pmax and the Pmax of GL and thus, did not result in significant decreases of total carbohydrate concentration of GPSB. As GPSB store a large amount of carbohydrates, it could also act as a source when the level of carbohydrates decreased. Thus, GL could depend on GPSB carbohydrates to regulate their photosynthesis when their source capacity was removed. However, 4 weeks after treatments, photosynthetic capacities of GL were significantly lower in GL- and GPSB-darkened plants than in FI plants, which could be due to the lower total soluble and insoluble sugar concentrations of both GL and GPSB in these plants. and J. He, B. H. G. Tan, L. Qin.
- Rights:
- http://creativecommons.org/licenses/by-nc-sa/4.0/ and policy:public
3. The differential effect of photoinhibition on the quantum yield of oxygen evolution and on the electron transport capacity studied with isolated spinach thylakoids
- Creator:
- Richter, M., Bóthin, B., and Wild, A.
- Format:
- Type:
- model:internalpart and TEXT
- Language:
- Multiple languages
- Description:
- The light response changes of oxygen evolutíon in the isolated spinách (Spinacia oleracea L.) thylakoids associated with the photoinhibition, influenced by the temperature and radical protection, were determined. Photoinhibition was performed at 20 ®C with or without an addition of antioxidant mixture consisting of glutathione, ascorbate, superoxide dismutase and catalase, oř, altematívely, at 0 oC without the antioxidants. Beside the effects on decline of atrazine binding sites and variable room temperature fluorescence, the three variants of photoinhibition differed with respect to their effects on the yield of oxygen evolutíon. Quantum yield of oxygen evolutíon (<{>02) flecline preceded Úie decrease of electron transport capacity at the beginning, while similar low values were found at the end of the treatment. In the presence of antioxidants the electron transport capacity remained high, whereas marked decline of (|»o^ occurred with the equally treated thylakoids. Comparable deviating behaviour of (t»Oj and the electron transport capacity was not found following photoinhibition at 0 oC; both were affected to the same degree, regardless if ferricyanide or the Qg- independent electron acceptor siUcomolybdate were ušed. With isolated thylakoids the quotient FyF,„, which is often ušed as a measure for photochemical efficiency of open photosystem 2 reaction centres in whole plant studies, did not decline to the same extent as (|)Oj under the dififerent photoinhibitoiy conditions applied. The main conclusion is that in thylakoid photoinhibition the independent mechanisms are associated with the changes of both the and electron transport capacity, and that the (j>02-related mechanism is inhibited at 0 oC.
- Rights:
- http://creativecommons.org/licenses/by-nc-sa/4.0/ and policy:public