To determine what factors limit the growth of wild Fritillaria cirrhosa and Fritillaria delavayi in field conditions, we investigated diurnal changes of the net photosynthetic rate (PN) and the correlation between PN and various environmental factors. Parameters of chlorophyll (Chl) fluorescence were evaluated to test whether ecological fragility caused the extinction of wild F. cirrhosa and F. delavayi. Our study reveals for the first time that F. cirrhosa and F. delavayi did not encounter significant stress under field conditions. A small reduction in maximum photochemical efficiency was observed under high irradiance. The maximum PN of F. cirrhosa was 30 % higher than F. delavayi (p<0.05), and a similar difference was observed for apparent quantum yield (27.3 %, p<0.01). F. delavayi was better adapted to a wide range of irradiances and high environmental temperature. Correlation between PN and environmental factors (without considering the effects of interactions among environmental factors on PN) using leaves of F. cirrhosa revealed that the three primary influencing factors were air pressure (p<0.01), relative humidity (p<0.01), and soil temperature (p<0.05). In F. delavayi, the influencing factors were relative humidity (p<0.01), soil temperature (p<0.05), CO2 concentration (p<0.05), and air pressure (p<0.05). Path analysis (considering effects among environmental factors on PN) showed that air temperature (negative correlation), photosynthetic photon flux density (PPFD) and relative humidity were the three primary limiting factors influencing the growth of F. cirrhosa. For this species, relative humidity reacted indirectly with air pressure, which was reported singularly in other species. Limiting growth factors for F. delavayi were PPFD, air pressure (negative correlation), soil temperature (negative correlation) and air temperature (negative correlation). and Xi-Wen Li, Shi-Lin Chen.
Diabetic or hyperglycaemic conditions stimulate the inflammatory response, excessive accumulation of extracellular matrix, and result in glomerulosclerosis, a scarring process of diabetic nephropathy. c-Jun activation domain-binding protein 1 (JAB1) functions as a regulator of pathways involved in cellular apoptosis and proliferation. The role of JAB1 in diabetic nephropathy was investigated in this study. Firstly, glomerular mesangial cells (GMCs) were treated with high glucose, and high glucose conditions induced up-regulation of JAB1 in the GMCs. Moreover, IL-6, TNF-α, MCP-1, and IL-1β were also elevated in high glucose-induced GMCs. Secondly, silencing of JAB1 reduced the levels of IL-6, TNF-α, MCP-1, and IL-1β in high glucose-induced GMCs. In addition, silencing of JAB1 attenuated the high glucose-induced decrease of superoxide dismutase (SOD) and the increase of reactive oxygen species (ROS) and malondialdehyde (MDA). The increased TGF-β1, collagen I, collagen IV, and fibronectin levels in high glucose-induced GMCs were restored by knockdown of JAB1. Thirdly, angiopoietin-like protein 2 (ANGPTL2) expression was reduced by JAB1. Over-expression of ANGPTL2 weakened the JAB1 silence-induced decrease of IL-6, TNF-α, MCP-1, IL-1β, TGF-β1, collagen I, collagen IV, and fibronectin. In conclusion, silencing of JAB1 reduced extracellular matrix deposition and suppressed inflammation in high glucose-induced GMCs through down-regulation of ANGPTL2.
Spermiogenesis in Phyllobothrium lactuca Beneden, 1850 begins with the formation of a differentiation zone bordered by cortical microtubules and containing a nucleus and two ccntrioles separated by an intercentriolar body and disposed one in the prolongation of the other. Later, formation of flagellar buds, striated roots and a median cytoplasmic extension takes place. Each centriole gives rise to a flagellimi that rotates and fuses with the median cytoplasmic extension. At this stage, arched membranes appear at the front of the differentiation zone. The nucleus elongates, becomes filiform and migrates between the striated roots into the spermatid. After the migration of the nucleus, the old spermatid separates from the residual cytoplasm by strangulation of the ring of arched membranes. Absence of striated roots, right at the beginning of spermiogenesis has never been described before in the Tctraphyllidea. Likewise, centrioles made up of doublets of microtubules and spermatids with two axonemes have never been reported before during spermiogenesis of a Phyllobothriidae. In this work we show, for the first time, the existence in cestodes of thick-walled microtubulcs surrounded by a layer of electron-dense material. In addition, we describe, for the first time, the existence of an accumulation of electron-dense granules around striated roots and an hour-glass-shaped constriction at the anterior extremity of a median cytoplasmic extension in a platyhelminth.