Data
----
Hindi Visual Genome 1.1 is an updated version of Hindi Visual Genome 1.0. The update concerns primarily the text part of Hindi Visual Genome, fixing translation issues reported during WAT 2019 multimodal task. In the image part, only one segment and thus one image were removed from the dataset.
Hindi Visual Genome 1.1 serves in "WAT 2020 Multi-Modal Machine Translation Task".
Hindi Visual Genome is a multimodal dataset consisting of text and images suitable for English-to-Hindi multimodal machine translation task and multimodal research. We have selected short English segments (captions) from Visual Genome along with associated images and automatically translated them to Hindi with manual post-editing, taking the associated images into account.
The training set contains 29K segments. Further 1K and 1.6K segments are provided in a development and test sets, respectively, which follow the same (random) sampling from the original Hindi Visual Genome.
A third test set is called ``challenge test set'' consists of 1.4K segments and it was released for WAT2019 multi-modal task. The challenge test set was created by searching for (particularly) ambiguous English words based on the embedding similarity and manually selecting those where the image helps to resolve the ambiguity. The surrounding words in the sentence however also often include sufficient cues to identify the correct meaning of the ambiguous word.
Dataset Formats
--------------
The multimodal dataset contains both text and images.
The text parts of the dataset (train and test sets) are in simple
tab-delimited plain text files.
All the text files have seven columns as follows:
Column1 - image_id
Column2 - X
Column3 - Y
Column4 - Width
Column5 - Height
Column6 - English Text
Column7 - Hindi Text
The image part contains the full images with the corresponding image_id as the file name. The X, Y, Width and Height columns indicate the rectangular region in the image described by the caption.
Data Statistics
----------------
The statistics of the current release is given below.
Parallel Corpus Statistics
---------------------------
Dataset Segments English Words Hindi Words
------- --------- ---------------- -------------
Train 28930 143164 145448
Dev 998 4922 4978
Test 1595 7853 7852
Challenge Test 1400 8186 8639
------- --------- ---------------- -------------
Total 32923 164125 166917
The word counts are approximate, prior to tokenization.
Citation
--------
If you use this corpus, please cite the following paper:
@article{hindi-visual-genome:2019,
title={{Hindi Visual Genome: A Dataset for Multimodal English-to-Hindi Machine Translation}},
author={Parida, Shantipriya and Bojar, Ond{\v{r}}ej and Dash, Satya Ranjan},
journal={Computaci{\'o}n y Sistemas},
volume={23},
number={4},
pages={1499--1505},
year={2019}
}
Data
-----
We have collected English-Odia parallel data for the purposes of NLP
research of the Odia language.
The data for the parallel corpus was extracted from existing parallel
corpora such as OdiEnCorp 1.0 and PMIndia, and books which contain both
English and Odia text such as grammar and bilingual literature books. We
also included parallel text from multiple public websites such as Odia
Wikipedia, Odia digital library, and Odisha Government websites.
The parallel corpus covers many domains: the Bible, other literature,
Wiki data relating to many topics, Government policies, and general
conversation. We have processed the raw data collected from the books,
websites, performed sentence alignments (a mix of manual and automatic
alignments) and released the corpus in a form suitable for various NLP
tasks.
Corpus Format
-------------
OdiEnCorp 2.0 is stored in simple tab-delimited plain text files, each
with three tab-delimited columns:
- a coarse indication of the domain
- the English sentence
- the corresponding Odia sentence
The corpus is shuffled at the level of sentence pairs.
The coarse domains are:
books ... prose text
dict ... dictionaries and phrasebooks
govt ... partially formal text
odiencorp10 ... OdiEnCorp 1.0 (mix of domains)
pmindia ... PMIndia (the original corpus)
wikipedia ... sentences and phrases from Wikipedia
Data Statistics
---------------
The statistics of the current release are given below.
Note that the statistics differ from those reported in the paper due to
deduplication at the level of sentence pairs. The deduplication was
performed within each of the dev set, test set and training set and
taking the coarse domain indication into account. It is still possible
that the same sentence pair appears more than once within the same set
(dev/test/train) if it came from different domains, and it is also
possible that a sentence pair appears in several sets (dev/test/train).
Parallel Corpus Statistics
--------------------------
Dev Dev Dev Test Test Test Train Train Train
Sents # EN # OD Sents # EN # OD Sents # EN # OD
books 3523 42011 36723 3895 52808 45383 3129 40461 35300
dict 3342 14580 13838 3437 14807 14110 5900 21591 20246
govt - - - - - - 761 15227 13132
odiencorp10 947 21905 19509 1259 28473 24350 26963 704114 602005
pmindia 3836 70282 61099 3836 68695 59876 30687 551657 486636
wikipedia 1896 9388 9385 1917 21381 20951 1930 7087 7122
Total 13544 158166 140554 14344 186164 164670 69370 1340137 1164441
"Sents" are the counts of the sentence pairs in the given set (dev/test/train)
and domain (books/dict/...).
"# EN" and "# OD" are approximate counts of words (simply space-delimited,
without tokenization) in English and Odia
The total number of sentence pairs (lines) is 13544+14344+69370=97258. Ignoring
the set and domain and deduplicating again, this number drops to 94857.
Citation
--------
If you use this corpus, please cite the following paper:
@inproceedings{parida2020odiencorp,
title={OdiEnCorp 2.0: Odia-English Parallel Corpus for Machine Translation},
author={Parida, Shantipriya and Dash, Satya Ranjan and Bojar, Ond{\v{r}}ej and Motlicek, Petr and Pattnaik, Priyanka and Mallick, Debasish Kumar},
booktitle={Proceedings of the WILDRE5--5th Workshop on Indian Language Data: Resources and Evaluation},
pages={14--19},
year={2020}
}